194 resultados para ECOLOGICAL NETWORKS
Resumo:
Coevolution is among the main forces shaping the biodiversity on Earth. In Eurasia, one of the best-known plant-insect interactions showing highly coevolved features involves the fly genus Chiastocheta and its host-plant Trollius. Although this system has been widely studied from an ecological point of view, the phylogenetic relationships and biogeographic history of the flies have remained little investigated. In this integrative study, we aim to test the monophyly of the five Chiastocheta eco-morphological groups, defined by Pellmyr in 1992, by inferring a mitochondrial phylogeny. We further apply a new approach to assess the effect of (i) different molecular substitution rates and (ii) phylogenetic uncertainty on the inference of the spatio-temporal evolution of the group. From a taxonomic point of view, we demonstrate that only two of Pellmyr's groups (rotundiventris and dentifera) are phylogenetically supported, the other species appearing para- or polyphyletic. We also identify the position of C. lophota, which was not included in previous surveys. From a spatio-temporal perspective, we show that the genus arose during the Pliocene in Europe. Our results also indicate that at least four large-scale dispersal events are required to explain the current distribution of Chiastocheta. Moreover, each dispersal to or from Asia is associated with a host-shift and seems to correspond to an increase in speciation rates. Finally, we highlight the correlation between diversification and climatic fluctuations, which indicate that the cycles of global cooling over the last million years had an influence on the radiation of the group.
Resumo:
Networks famously epitomize the shift from 'government' to 'governance' as governing structures for exercising control and coordination besides hierarchies and markets. Their distinctive features are their horizontality, the interdependence among member actors and an interactive decision-making style. Networks are expected to increase the problem-solving capacity of political systems in a context of growing social complexity, where political authority is increasingly fragmented across territorial and functional levels. However, very little attention has been given so far to another crucial implication of network governance - that is, the effects of networks on their members. To explore this important question, this article examines the effects of membership in European regulatory networks on two crucial attributes of member agencies, which are in charge of regulating finance, energy, telecommunications and competition: organisational growth and their regulatory powers. Panel analysis applied to data on 118 agencies during a ten-year period and semi-structured interviews provide mixed support regarding the expectation of organisational growth while strongly confirming the positive effect of networks on the increase of the regulatory powers attributed to member agencies.
Resumo:
Abstract In social insects, workers perform a multitude of tasks, such as foraging, nest construction, and brood rearing, without central control of how work is allocated among individuals. It has been suggested that workers choose a task by responding to stimuli gathered from the environment. Response-threshold models assume that individuals in a colony vary in the stimulus intensity (response threshold) at which they begin to perform the corresponding task. Here we highlight the limitations of these models with respect to colony performance in task allocation. First, we show with analysis and quantitative simulations that the deterministic response-threshold model constrains the workers' behavioral flexibility under some stimulus conditions. Next, we show that the probabilistic response-threshold model fails to explain precise colony responses to varying stimuli. Both of these limitations would be detrimental to colony performance when dynamic and precise task allocation is needed. To address these problems, we propose extensions of the response-threshold model by adding variables that weigh stimuli. We test the extended response-threshold model in a foraging scenario and show in simulations that it results in an efficient task allocation. Finally, we show that response-threshold models can be formulated as artificial neural networks, which consequently provide a comprehensive framework for modeling task allocation in social insects.
Resumo:
Les parasites jouent un rôle clef dans l'évolution des comportements et des traits d'histoire de vie de leurs hôtes. Le parasitisme s'avère parfois dévastateur à l'échelle de population d'hôtes, et peut également altérer certains traits associés à la valeur sélective d'un individu infecté, tels que son succès reproducteur ou encore son taux de mortalité. La coévolution hôte/parasite, qui représente l'une des forces sélectives les plus puissantes dans l'évolution des organismes, peut également conduire les partenaires de l'association parasitaire à s'adapter localement à des environnements hétérogènes. Cette thèse porte sur l'étude de parasites aviaires, du genre Plasmodium, Haemopro- teus et Leucocytozoon (Haemosporidae), naturellement associés à différentes populations de mésanges charbonnières (Parus major) et d'hirondelles des fenêtres (Delichon ur- bicum). Dans un premier temps, nous avons cherché à déterminer comment se distribuent ces parasites au sein de différentes populations hôtes et si ces communautés de parasites sont structurées. Par la suite, la principale question à laquelle nous voulions répondre était de savoir comment ces parasites, et notamment après coexistence de plusieurs lignées génétiques d'Haemosporidae au sein dun même-individu (i.e. co-infection), affectent la physiologie et le succès de reproducteur des hôtes. Nos résultats suggèrent que la distribution des Haemosporidae est principalement gouvernée par la présence d'insectes vecteurs et que la persistance de l'infection chez les hôtes varie en fonction du genre d'Haemosporidae (Chapitre 1-2). Par ailleurs, nous avons trouvé que des lignées de parasite génétiquement distinctes peuvent avoir des effets contrastés sur leurs hôtes. Par exemple, les hôtes exhibent des différences de parasitémie marquées en fonction des lignées de parasites responsable de l'infection. De plus, le succès reproducteur ainsi que la charge parasitaire des mésanges infectées par Plasmodium ou Haemoproteus n'étaient pas affecté par l'infection simultanée avec Leucocytozoon (Chapitre 2-3). Dans le Chapitre 4, j'ai examiné la capacité immunitaire de mésanges charbonnières infectées par des hémosporidies. Les résultats n'ont pas été concluant, et je suggère fortement une réévaluation de ceux-ci dans de futures études. Les mésanges charbonnières ne semblent pas signaler leur statut infectieux par la coloration de leur plumage (Chapitre 5); toutefois, la coloration noire des plumes reflète l'état de stress oxydatif des mésanges, qui dépend lui-même de l'infection parasitaire. La coloration verte pourrait également indiquer la qualité des soins paxentaux délivrés par les mésanges adultes femelles à leurs petits, comme le suggère la corrélation que nous avons observée entre la masse des jeunes d'une nichée et la coloration de leur mère. Les hirondelles capturées en Algérie souffrent plus de l'infection que celles échantillon¬nées en Europe (Chapitre 6). Les similitudes observées entre les communautés de par¬asites affectant les populations européennes et celles des populations nord-africaines suggèrent que la transmission des parasites a lieu lors de la migration vers le sud. A l'instar de nos observations sur les mésanges dans les chapitres 2 et 3, les hirondelles co-infectées ne montrent pas d'altérations de leur condition physique. Cette thèse démontre qu'il existe, au sein des populations de mésanges charbonnières, des interactions antagonistes entre, d'une part, les parasites et leurs hôtes et d'autre part, entre différent parasites. Le résultat de ces interactions antagonistes varie en fonction des espèces et de la zone géographique considérée. Nous avons démontré que les interactions ne suivent pas toujours la théorie, puisque la coevolution qui, en suivant le concept de la virulence, devrait augmenter la charge parasitaire et diminuer la condition physique des hôtes, ne montre pourtant pas d'impact négatif sur les populations de mésanges. Nous pouvons maintenant concentrer nos efforts à la caractérisation des interactions antagonistes. De plus, grâce aux avancées des méthodes moléculaires, nous pouvons suivre et étudier en détails comment ces interactions se manifestent et quels sont leurs effets sur la condition physique des hôtes. - Parasites are key in shaping various behavioural and life-history traits of their hosts. The influence of parasitism on host populations varies from slight to devastating and might influence such parameters as mortality rates or reproductive success. Host-parasite coevolution is one of the most powerful selective forces in evolution and can lead to local adaptation of parasites and hosts in spatially structured environments. In this thesis, I studied haemosporidian parasites in different populations of great tits (Parus major) and house martins (Delichon urbicum). Firstly, I wanted to determine how parasites are distributed and if parasite communities are structured. The main question I wanted to address hereafter was how parasites, and specifically infection with multiple genera of parasites (i.e. co-infection) influenced host physiology and reproductive success. I found that parasite distribution is environmentally driven and could therefore be closely linked to vector prevalence; and that the stability of parasite infection over time is genus-dependent (Chapter 1 - 2). I further found that different haemosporidian lineages might interact differently with their hosts as parasitaemia was strongly lineage-specific and that the presence of Leucocytozoon parasites showed no correlation to Plasmodium or Haemoproteus parasitaemia, nor to great tit reproductive success (Chapter 2-3). In Chapter 4 I examined immune capacity of haemosporidian-infected great tits. The results proved inconclusive, and I strongly suggest re-evaluation hereof in future work. Great tits do not appear to signal parasite infection through plumage colouration (Chapter 5); however, infection did have a link to oxidative stress resistance which is strongly signalled through the black breast stripe, with darker males being more resistant and darker females less resistant. Females might incur different costs associated with darker stripes. This would allow reversal of signaling function. Green colouration could also serve as a cue for female provisioning quality as indicated by the strong correlation between colouration and chick body mass. Breeding house martins caught in Algeria suffer greater haemosporidian infection than European populations (Chapter 6). Similar parasite communities in European and North-African populations suggest transmission of parasites may occur during southward migration. Similarly to what was observed in great tits in Chapter 2 and 3, no relationship was found between parasite co-infection and Swiss house martin body condition. This thesis demonstrates that host-parasite and inter-parasite antagonistic interac¬tions exist in great tit populations. How these interactions play out is species dependent and varies geographically. I have demonstrated that interactions do not always follow the theory, as co-infection - which under the concept of virulence should increase parasitaemia and decrease body condition - showed no negative impact on great tit populations. We can now concentrate our efforts on characterising these antagonistic interactions, and with the advance in molecular methods, track and investigate how these interactions play out and what the effect on host fitness is.
Resumo:
The population ecology of clonal plants depends on the number and distribution of ramets formed during growth. Variation in clonal reproduction has previously been explained by variation in effects of abiotic resource heterogeneity and by plant genotypic variation. Different co-occurring species of the mutualistic arbuscular mycorrhizal fungi (AMF) have been shown to differentially alter growth traits of Prunella vulgaris which we hypothesize would lead to changes in clonal reproduction. Two experiments were carried out to test whether different co-occurring mycorrhizal fungi significantly influence clonal reproduction of P. vulgaris whether this effect also occurs when P. vulgaris is growing in an artificial plant community and how the effects compare with plant genotype effects on clonal growth of P. vulgaris. In the first experiment the number of ramets of P. vulgaris growing in a plant community of simulated calcareous grassland was significantly affected by inoculation with different mycorrhizal fungi. The number of ramets produced by P. vulgaris differed by a factor of up to 1.8 with different mycorrhizal fungi. The fungal effects on the number of new ramets were independent of their effects on the biomass of P. vulgaris. In a second experiment 17 different genotypes of P. vulgaris were inoculated with different mycorrhizal fungi. There were significant main effects of genotypes and mycorrhizal fungi on clonal reproduction of P. vulgaris. The effect of different mycorrhizal fungi contributed more than the effect of plant genotype to variation in size and ramet production. However mean stolon length and spacer length which determine the spatial arrangement of ramets were only significantly affected by plant genotype. There were no mycorrhizal fungal X plant genotype interactions on clonal growth of P. vulgaris indicating that there is no obvious evidence that selection pressures would favor further coevolution between P. vulgaris and mycorrhizal fungal species. In natural communities plants can be colonized by several different AMF at the same time. The effect of the mixed AMF treatment on the growth and clonal reproduction of P. vulgaris could not be predicted from the responses of the plants to the single AMF To what extent however the patterns of colonization by different AMF differ among plants in a natural community is unknown. Since the effects of AMF on growth and clonal reproduction occur on a population of P. vulgaris in a microcosm plant community and because the effects are also as great as those caused by plant genotypic variation we conclude that the effects are strong enough to potentially affect population size and variation of clonal plants in communities.
Resumo:
This paper analyses and discusses arguments that emerge from a recent discussion about the proper assessment of the evidential value of correspondences observed between the characteristics of a crime stain and those of a sample from a suspect when (i) this latter individual is found as a result of a database search and (ii) remaining database members are excluded as potential sources (because of different analytical characteristics). Using a graphical probability approach (i.e., Bayesian networks), the paper here intends to clarify that there is no need to (i) introduce a correction factor equal to the size of the searched database (i.e., to reduce a likelihood ratio), nor to (ii) adopt a propositional level not directly related to the suspect matching the crime stain (i.e., a proposition of the kind 'some person in (outside) the database is the source of the crime stain' rather than 'the suspect (some other person) is the source of the crime stain'). The present research thus confirms existing literature on the topic that has repeatedly demonstrated that the latter two requirements (i) and (ii) should not be a cause of concern.
Resumo:
Substantial investment in climate change research has led to dire predictions of the impacts and risks to biodiversity. The Intergovernmental Panel on Climate Change fourth assessment report(1) cites 28,586 studies demonstrating significant biological changes in terrestrial systems(2). Already high extinction rates, driven primarily by habitat loss, are predicted to increase under climate change(3-6). Yet there is little specific advice or precedent in the literature to guide climate adaptation investment for conserving biodiversity within realistic economic constraints(7). Here we present a systematic ecological and economic analysis of a climate adaptation problem in one of the world's most species-rich and threatened ecosystems: the South African fynbos. We discover a counterintuitive optimal investment strategy that switches twice between options as the available adaptation budget increases. We demonstrate that optimal investment is nonlinearly dependent on available resources, making the choice of how much to invest as important as determining where to invest and what actions to take. Our study emphasizes the importance of a sound analytical framework for prioritizing adaptation investments(4). Integrating ecological predictions in an economic decision framework will help support complex choices between adaptation options under severe uncertainty. Our prioritization method can be applied at any scale to minimize species loss and to evaluate the robustness of decisions to uncertainty about key assumptions.
Resumo:
A recent study of a pair of sympatric species of cichlids in Lake Apoyo in Nicaragua is viewed as providing probably one of the most convincing examples of sympatric speciation to date. Here, we describe and study a stochastic, individual-based, explicit genetic model tailored for this cichlid system. Our results show that relatively rapid (<20,000 generations) colonization of a new ecological niche and (sympatric or parapatric) speciation via local adaptation and divergence in habitat and mating preferences are theoretically plausible if: (i) the number of loci underlying the traits controlling local adaptation, and habitat and mating preferences is small; (ii) the strength of selection for local adaptation is intermediate; (iii) the carrying capacity of the population is intermediate; and (iv) the effects of the loci influencing nonrandom mating are strong. We discuss patterns and timescales of ecological speciation identified by our model, and we highlight important parameters and features that need to be studied empirically to provide information that can be used to improve the biological realism and power of mathematical models of ecological speciation.
Resumo:
This paper advocates the adoption of a mixed-methods research design to describe and analyze ego-centered social networks in transnational family research. Drawing on the experience of the Social Networks Influences on Family Formation project (2004-2005), I show how the combined use of network generators and semistructured interviews (N = 116) produces unique data on family configurations and their impact on life course choices. A mixed-methods network approach presents specific advantages for research on children in transnational families. On the one hand, quantitative analyses are crucial for reconstructing and measuring the potential and actual relational support available to children in a context where kin interactions may be hindered by temporary and prolonged periods of separation. On the other hand, qualitative analyses can address strategies and practices employed by families to maintain relationships across international borders and geographic distance, as well as the implications of those strategies for children's well-being.
Resumo:
The ecological relevance of behavioural syndromes is little studied in cooperative breeding systems where it is assumed that the behavioural type might influence individual decisions on helping and dispersal (e.g. shy, nonaggressive and nonexplorative individuals remain philopatric and helpful, whereas bold, aggressive, explorative individuals compete for vacancies outside their group and disperse). We measured the behavioural type of 19 subordinates in the cooperatively breeding cichlid fish Neolamprologus pulcher in their natural environment by quantifying six behavioural traits up to four times ('trials') in three different contexts, by presenting them with a conspecific intruder, a predator or nothing inside a tube. We found only moderate within-context repeatability (intraclass correlation coefficients) of the focal individual's behaviour, except for attacking either the conspecific or the predator inside the tube. The focal individual's attack rate of the tube was also positively affected by its group size. Averaging traits per context removed the between-trial variation, and consequently the across-context repeatability was very high for all six traits, except for territory maintenance. Trait values depended significantly on the context, except for territory defence. Consequently, individuals could be classified into different behavioural types based on their reaction towards the tube, but surprisingly, and opposite to laboratory studies in this species, ranging propensity and territory maintenance were not included in this behavioural syndrome. We suggest that more studies are needed to compare standardized focal personality tests (e.g. exploration propensity) with actual behaviour observed in nature (e.g. ranging and dispersal).
Resumo:
Ectopic or tertiary lymphoid tissues (TLTs) are often induced at sites of chronic inflammation. They typically contain various hematopoietic cell types, high endothelial venules, and follicular dendritic cells; and are organized in lymph node-like structures. Although fibroblastic stromal cells may play a role in TLT induction and persistence, they have remained poorly defined. Herein, we report that TLTs arising during inflammation in mice and humans in a variety of tissues (eg, pancreas, kidney, liver, and salivary gland) contain stromal cell networks consisting of podoplanin(+) T-zone fibroblastic reticular cells (TRCs), distinct from follicular dendritic cells. Similar to lymph nodes, TRCs were present throughout T-cell-rich areas and had dendritic cells associated with them. They expressed lymphotoxin (LT) β receptor (LTβR), produced CCL21, and formed a functional conduit system. In rat insulin promoter-CXCL13-transgenic pancreas, the maintenance of TRC networks and conduits was partially dependent on LTβR and on lymphoid tissue inducer cells expressing LTβR ligands. In conclusion, TRCs and conduits are hallmarks of secondary lymphoid organs and of well-developed TLTs, in both mice and humans, and are likely to act as important scaffold and organizer cells of the T-cell-rich zone.