198 resultados para Development of symptoms
Resumo:
Contamination with arsenic is a recurring problem in both industrialized and developing countries. Drinking water supplies for large populations can have concentrations much higher than the permissible levels (for most European countries and the United States, 10 μg As per L; elsewhere, 50 μg As per L). Arsenic analysis requires high-end instruments, which are largely unavailable in developing countries. Bioassays based on genetically engineered bacteria have been proposed as suitable alternatives but such tests would profit from better standardization and direct incorporation into sensing devices. The goal of this work was to develop and test microfluidic devices in which bacterial bioreporters could be embedded, exposed and reporter signals detected, as a further step towards a complete miniaturized bacterial biosensor. The signal element in the biosensor is a nonpathogenic laboratory strain of Escherichia coli, which produces a variant of the green fluorescent protein after contact to arsenite and arsenate. E. coli bioreporter cells were encapsulated in agarose beads and incorporated into a microfluidic device where they were captured in 500 × 500 μm(2) cages and exposed to aqueous samples containing arsenic. Cell-beads frozen at -20 °C in the microfluidic chip retained inducibility for up to a month and arsenic samples with 10 or 50 μg L(-1) could be reproducibly discriminated from the blank. In the 0-50 μg L(-1) range and with an exposure time of 200 minutes, the rate of signal increase was linearly proportional to the arsenic concentration. The time needed to reliably and reproducibly detect a concentration of 50 μg L(-1) was 75-120 minutes, and 120-180 minutes for a concentration of 10 μg L(-1).
Resumo:
Q fever is a worldwide zoonotic infectious disease due to Coxiella burnetii. The clinical presentation may be acute (pneumonia and/or hepatitis) or chronic (most commonly endocarditis). Diagnosis mainly relies on serology and PCR. We therefore developed a quantitative real-time PCR. We first tested blindly its performance on various clinical samples and then, when thoroughly validated, we applied it during a 7-year period for the diagnosis of both acute and persistent C. burnetii infection. Analytical sensitivity (< 10 copies/PCR) was excellent. When tested blindly on 183 samples, the specificity of the PCR was 100% (142/142) and the sensitivity was 71% (29/41). The sensitivity was 88% (7/8) on valvular samples, 69% (20/29) on blood samples and 50% (2/4) on urine samples. This new quantitative PCR was then successfully applied for the diagnosis of acute Q fever and endovascular infection due to C. burnetii, allowing the diagnosis of Q fever in six patients over a 7-year period. During a local small cluster of cases, the PCR was also applied to blood from 1355 blood donors; all were negative confirming the high specificity of this test. In conclusion, we developed a highly specific method with excellent sensitivity, which may be used on sera for the diagnosis of acute Q fever and on various samples such as sera, valvular samples, aortic specimens, bone and liver, for the diagnosis of persistent C. burnetii infection.
Resumo:
It has been known for some time that different arbuscular mycorrhizal fungal (AMF) taxa confer differences in plant growth. Although genetic variation within AMF species has been given less attention, it could potentially be an ecologically important source of variation. Ongoing studies on variability in AMF genes within Glomus intraradices indicate that at least for some genes, such as the BiP gene, sequence variability can be high, even in coding regions. This suggests that genetic variation within an AMF may not be selectively neutral. This clearly needs to be investigated in more detail for other coding regions of AMF genomes. Similarly, studies on AMF population genetics indicate high genetic variation in AMF populations, and a considerable amount of variation seen in phenotypes in the population can be attributed to genetic differences among the fungi. The existence of high within-species genetic variation could have important consequences for how investigations on AMF gene expression and function are conducted. Furthermore, studies of within-species genetic variability and how it affects variation in plant growth will help to identify at what level of precision ecological studies should be conducted to identify AMF in plant roots in the field. A population genetic approach to studying AMF genetic variability can also be useful for inoculum development. By knowing the amount of genetic variability in an AMF population, the maximum and minimum numbers of spores that will contain a given amount of genetic diversity can be estimated. This could be particularly useful for developing inoculum with high adaptability to different environments.
Resumo:
In this study, we investigated the effect of the xanthine oxidase (XO) inhibitor, allopurinol (ALP), on cardiac dysfunction, oxidative-nitrosative stress, apoptosis, poly(ADP-ribose) polymerase (PARP) activity and fibrosis associated with diabetic cardiomyopathy in mice. Diabetes was induced in C57/BL6 mice by injection of streptozotocin. Control and diabetic animals were treated with ALP or placebo. Left ventricular systolic and diastolic functions were measured by pressure-volume system 10 weeks after established diabetes. Myocardial XO, p22(phox), p40(phox), p47(phox), gp91(phox), iNOS, eNOS mRNA and/or protein levels, ROS and nitrotyrosine (NT) formation, caspase3/7 and PARP activity, chromatin fragmentation and various markers of fibrosis (collagen-1, TGF-beta, CTGF, fibronectin) were measured using molecular biology and biochemistry methods or immunohistochemistry. Diabetes was characterized by increased myocardial, liver and serum XO activity (but not expression), increased myocardial ROS generation, p22(phox), p40(phox), p47(phox), p91(phox) mRNA expression, iNOS (but not eNOS) expression, NT generation, caspase 3/7 and PARP activity/expression, chromatin fragmentation and fibrosis (enhanced accumulation of collagen, TGF-beta, CTGF and fibronectin), and declined systolic and diastolic myocardial performance. ALP attenuated the diabetes-induced increased myocardial, liver and serum XO activity, myocardial ROS, NT generation, iNOS expression, apoptosis, PARP activity and fibrosis, which were accompanied by improved systolic (measured by the evaluation of both load-dependent and independent indices of myocardial contractility) and diastolic performance of the hearts of treated diabetic animals. Thus, XO inhibition with ALP improves type 1 diabetes-induced cardiac dysfunction by decreasing oxidative/nitrosative stress and fibrosis, which may have important clinical implications for the treatment and prevention of diabetic cardiomyopathy and vascular dysfunction.
Resumo:
TWEAK, a TNF family ligand with pleiotropic cellular functions, was originally described as capable of inducing tumor cell death in vitro. TWEAK functions by binding its receptor, Fn14, which is up-regulated on many human solid tumors. Herein, we show that intratumoral administration of TWEAK, delivered either by an adenoviral vector or in an immunoglobulin Fc-fusion form, results in significant inhibition of tumor growth in a breast xenograft model. To exploit the TWEAK-Fn14 pathway as a therapeutic target in oncology, we developed an anti-Fn14 agonistic antibody, BIIB036. Studies described herein show that BIIB036 binds specifically to Fn14 but not other members of the TNF receptor family, induces Fn14 signaling, and promotes tumor cell apoptosis in vitro. In vivo, BIIB036 effectively inhibits growth of tumors in multiple xenograft models, including colon (WiDr), breast (MDA-MB-231), and gastric (NCI-N87) tumors, regardless of tumor cell growth inhibition response observed to BIIB036 in vitro. The anti-tumor activity in these cell lines is not TNF-dependent. Increasing the antigen-binding valency of BIB036 significantly enhances its anti-tumor effect, suggesting the contribution of higher order cross-linking of the Fn14 receptor. Full Fc effector function is required for maximal activity of BIIB036 in vivo, likely due to the cross-linking effect and/or ADCC mediated tumor killing activity. Taken together, the anti-tumor properties of BIIB036 validate Fn14 as a promising target in oncology and demonstrate its potential therapeutic utility in multiple solid tumor indications.
Resumo:
AIM: To study the development of motor speed and associated movements in participants aged 5 to 18 years for age, sex, and laterality. METHOD: Ten motor tasks of the Zurich Neuromotor Assessment (repetitive and alternating movements of hands and feet, repetitive and sequential finger movements, the pegboard, static and dynamic balance, diadochokinesis) were administered to 593 right-handed participants (286 males, 307 females). RESULTS: A strong improvement with age was observed in motor speed from age 5 to 10, followed by a levelling-off between 12 and 18 years. Simple tasks and the pegboard matured early and complex tasks later. Simple tasks showed no associated movements beyond early childhood; in complex tasks associated movements persisted until early adulthood. The two sexes differed only marginally in speed, but markedly in associated movements. A significant laterality (p<0.001) in speed was found for all tasks except for static balance; the pegboard was most lateralized, and sequential finger movements least. Associated movements were lateralized only for a few complex tasks. We also noted a substantial interindividual variability. INTERPRETATION: Motor speed and associated movements improve strongly in childhood, weakly in adolescence, and are both of developmental relevance. Because they correlate weakly, they provide complementary information.
Resumo:
From birth to early adulthood the brain undergoes dramatic modifications resulting in network development and optimization. In the present study we investigate the development of the human connectome but measuring myelination trajectories of individual connections over the entire brain structural network using high b-value diffusion imaging and tractography. We found significant changes in several network measures that support increased integration and efficiency. We also observe that the network doesn't myelinate at a uniform rate but with different myelination speeds dependant on the type of cortex.
Resumo:
Pancreatic ß cells are highly specialized endocrine cells located within the islets of Langerhans in the pancreas. Their main role is to produce and secrete insulin, the hormone essential for the regulation of glucose homeostasis and body's metabolism. Diabetes mellitus develops when the amount of insulin released by ß cells is not sufficient to cover the metabolic demand. In type 1 diabetes (5-10% of diagnoses) insulin deficiency is caused by the autoimmune destruction of pancreatic ß cells. Type 2 diabetes (90% of diagnoses) results from a genetic predisposition and from the presence of adverse environmental conditions. The combination of these factors reduces insulin sensitivity of peripheral target tissues, causes impairment in ß-cell function and can lead to partial loss of ß cells. The development of novel therapeutic strategies for the treatment of diabetes necessitates the comprehension of the cellular processes involved in dysfunction and loss of ß cells. My thesis was focused on the involvement in the physiopathological processes leading to the development of diabetes of a class of small regulatory RNA molecules, called microRNAs (miRNAs) that post- transcriptionally regulate gene expression. Global miRNA profiling in pancreatic islets of two animal models of diabetes, the db/db mice and mice that were fed a high fat diet (HFD), characterized by obesity and insulin resistance, led us to identify two groups of miRNAs displaying expression changes under pre-diabetic and diabetic conditions. Among the miRNAs already upregulated in pre-diabetic db/db mice and HFD mice, miR- 132 was found to have beneficial effects on pancreatic ß cell function and survival. Indeed, mimicking the upregulation of miR-132 in primary pancreatic islet cells and ß-cell lines improved glucose- induced insulin secretion and favored survival of the cells upon exposure to pro-apoptotic stimuli such as palmitate and cytokines. MiR-132 was found to exert its action by enhancing the expression of MafA, a transcription factor essential for ß-cell function, survival and identity. On the other hand, up-regulation of miR-199a-5p and miR-199a-3p was detectable only in the islets of diabetic db/db mice and resulted in impaired insulin secretion and sensitization of the cells to apoptosis. MiR-199a- 5p was found to decrease insulin secretion by inducing the expression of granuphilin, a potent inhibitor of ß cell exocytosis. In contrast, miR-199a-3p was demonstrated to directly target and reduce the expression of two key ß-cell genes, mTOR and cMET, resulting in impaired ß-cell adaptation to metabolic demands and loss by apoptosis. Our findings suggest that miRNAs are important players in the onset of type 2 diabetes. MiRNA expression is adjusted in pancreatic ß cells exposed to a diabetogenic environment. These changes initially concern miRNAs responsible for adaptive processes aimed at compensating the onset of insulin resistance, but later such changes can be overlapped by modifications in the level of several additional miRNAs that favor ß-cell failure and the onset of type 2 diabetes.
Resumo:
Résumé Cette étude examine les changements précoces dans le Style Défensif Maladaptatif (SDM), le développement de l'alliance thérapeutique et la relation entre le SDM et l'alliance au cours d'une psychothérapie psychodynamique ultra-brève. Soixante-huit patients ambulatoires du centre de consultation psychiatrique et psychothérapique ont bénéficié d'une intervention psychodynamique en quatre séances. Les mesures des défenses et de l'alliance étaient effectuées à la première et à la dernière séance. Les patients qui ont débuté l'intervention avec une alliance faible et qui l'ont terminée avec une alliance haute (groupe de patients avec une alliance de croissance linéaire) ont diminué leur utilisation de défenses maladaptatives de manière significative au cours de la thérapie, alors que ce n'a pas été le cas pour les patients des groupes à alliances haute-stable et basse-stable. Les résultats ont montré qu'à la fin de l'intervention, le SDM et l'alliance étaient corrélés pour tous les patients. Cette corrélation intéressait plus particulièrement le groupe avec une alliance de croissance linéaire. Ces résultats suggèrent, que le développement de l'alliance thérapeutique reflètent le travail de collaboration entre le patient et son thérapeute alors qu'ils essayent de mieux comprendre les causes de la crise du patient. Cette compréhension peut aider à réduire les défenses initialement activées pour permettre au patient de se défendre de l'anxiété et d'un sentiment de détresse. Abstract This study examined the early change in Maladaptive Defense Style (MDS), the development of the Therapeutic Alliance, and the relationship between MDS and alliance, in a short psychodynamic intervention. Sixty-eight outpatients from a psychiatric clinic completed a four-session psychodynamic intervention. Defense and alliance measures were collected at the intake and the final session. Patients who began the intervention with a poor alliance but ended with a good alliance (linear growth therapeutic alliance group) significantly decreased their use of maladaptive defenses over the course of therapy, while patients in the high and low alliance groups did not. Results showed that at the end of the intervention, MDS and alliance were related across all patients. This relation concerned particularly the linear growth therapeutic alliance profile. These results suggest that the developing therapeutic alliance might reflect the collaborative work between the patient and the therapist as they try to understand the causes of the crisis. This understanding might help reduce maladaptive defenses that were initially activated to ward off anxiety and distress.