123 resultados para DROSOPHILA-MELANOGASTER RDNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drosophila GoLoco motif-containing protein Pins is unusual in its highly efficient interaction with both GDP- and the GTP-loaded forms of the α-subunit of the heterotrimeric Go protein. We analysed the interactions of Gαo in its two nucleotide forms with GoLoco1-the first of the three GoLoco domains of Pins-and the possible structures of the resulting complexes, through combination of conventional fluorescence and FRET measurements as well as through molecular modelling. Our data suggest that the orientation of the GoLoco1 motif on Gαo significantly differs between the two nucleotide states of the latter. In other words, a rotation of the GoLoco1 peptide in respect with Gαo must accompany the nucleotide exchange in Gαo. The sterical hindrance requiring such a rotation probably contributes to the guanine nucleotide exchange inhibitor activity of GoLoco1 and Pins as a whole. Our data have important implications for the mechanisms of Pins regulation in the process of asymmetric cell divisions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptation of organisms to ever-changing nutritional environments relies on sensor tissues and systemic signals. Identification of these signals would help understand the physiological crosstalk between organs contributing to growth and metabolic homeostasis. Here we show that Eiger, the Drosophila TNF-α, is a metabolic hormone that mediates nutrient response by remotely acting on insulin-producing cells (IPCs). In the condition of nutrient shortage, a metalloprotease of the TNF-α converting enzyme (TACE) family is active in fat body (adipose-like) cells, allowing the cleavage and release of adipose Eiger in the hemolymph. In the brain IPCs, Eiger activates its receptor Grindelwald, leading to JNK-dependent inhibition of insulin production. Therefore, we have identified a humoral connexion between the fat body and the brain insulin-producing cells relying on TNF-α that mediates adaptive response to nutrient deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity.