233 resultados para DIRECT ANTENNA MODULATION
Resumo:
Inorganic phosphate (Pi) is one of the most limiting nutrients for plant growth in both natural and agricultural contexts. Pi-deficiency leads to a strong decrease in shoot growth, and triggers extensive changes at the developmental, biochemical and gene expression levels that are presumably aimed at improving the acquisition of this nutrient and sustaining growth. The Arabidopsis thaliana PHO1 gene has previously been shown to participate in the transport of Pi from roots to shoots, and the null pho1 mutant has all the hallmarks associated with shoot Pi deficiency. We show here that A. thaliana plants with a reduced expression of PHO1 in roots have shoot growth similar to Pi-sufficient plants, despite leaves being strongly Pi deficient. Furthermore, the gene expression profile normally triggered by Pi deficiency is suppressed in plants with low PHO1 expression. At comparable levels of shoot Pi supply, the wild type reduces shoot growth but maintains adequate shoot vacuolar Pi content, whereas the PHO1 underexpressor maintains maximal growth with strongly depleted Pi reserves. Expression of the Oryza sativa (rice) PHO1 ortholog in the pho1 null mutant also leads to plants that maintain normal growth and suppression of the Pi-deficiency response, despite the low shoot Pi. These data show that it is possible to unlink low shoot Pi content with the responses normally associated with Pi deficiency through the modulation of PHO1 expression or activity. These data also show that reduced shoot growth is not a direct consequence of Pi deficiency, but is more likely to be a result of extensive gene expression reprogramming triggered by Pi deficiency.
Resumo:
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex, composed of viral proteins, replicating RNA and altered cellular membranes. We describe here HCV replicons that allow the direct visualization of functional HCV replication complexes. Viable replicons selected from a library of Tn7-mediated random insertions in the coding sequence of nonstructural protein 5A (NS5A) allowed the identification of two sites near the NS5A C terminus that tolerated insertion of heterologous sequences. Replicons encoding green fluorescent protein (GFP) at these locations were only moderately impaired for HCV RNA replication. Expression of the NS5A-GFP fusion protein could be demonstrated by immunoblot, indicating that the GFP was retained during RNA replication and did not interfere with HCV polyprotein processing. More importantly, expression levels were robust enough to allow direct visualization of the fusion protein by fluorescence microscopy. NS5A-GFP appeared as brightly fluorescing dot-like structures in the cytoplasm. By confocal laser scanning microscopy, NS5A-GFP colocalized with other HCV nonstructural proteins and nascent viral RNA, indicating that the dot-like structures, identified as membranous webs by electron microscopy, represent functional HCV replication complexes. These findings reveal an unexpected flexibility of the C-terminal domain of NS5A and provide tools for studying the formation and turnover of HCV replication complexes in living cells.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) (alpha, beta/delta and gamma) are lipid sensors capable of adapting gene expression to integrate various lipid signals. As such, PPARs are also very important pharmaceutical targets, and specific synthetic ligands exist for the different isotypes and are either currently used or hold promises in the treatment of major metabolic disorders. In particular, compounds of the class of the thiazolinediones (TZDs) are PPARgamma agonists and potent insulin-sensitizers. The specific but still broad expression patterns of PPARgamma, as well as its implication in numerous pathways, constitutes also a disadvantage regarding drug administration, since this potentially increases the chance to generate side-effects through the activation of the receptor in tissues or cells not affected by the disease. Actually, numerous side effects associated with the administration of TZDs have been reported. Today, a new generation of PPARgamma modulators is being actively developed to activate the receptor more specifically, in a cell and time-dependent manner, in order to induce a specific subset of target genes only and modulate a restricted number of metabolic pathways. We will discuss here why and how the development of such selective PPARgamma modulators is possible, and summarize the results obtained with the published molecules.
Resumo:
We have analyzed the presentation of human histocompatability leukocyte antigen-A*0201-associated tumor peptide antigen MAGE-3271-279 by melanoma cells. We show that specific cytotoxic T lymphocyte (CTL)-recognizing cells transfected with a minigene encoding the preprocessed fragment MAGE-3271-279 failed to recognize cells expressing the full length MAGE-3 protein. Digestion of synthetic peptides extended at the NH2 or COOH terminus of MAGE-3271-279 with purified human proteasome revealed that the generation of the COOH terminus of the antigenic peptide was impaired. Surprisingly, addition of lactacystin to purified proteasome, though partially inhibitory, resulted in the generation of the antigenic peptide. Furthermore, treatment of melanoma cells expressing the MAGE-3 protein with lactacystin resulted in efficient lysis by MAGE-3271-279-specific CTL. We therefore postulate that the generation of antigenic peptides by the proteasome in cells can be modulated by the selective inhibition of certain of its enzymaticactivities.
Resumo:
Evidence from magnetic resonance imaging (MRI) studies shows that healthy aging is associated with profound changes in cortical and subcortical brain structures. The reliable delineation of cortex and basal ganglia using automated computational anatomy methods based on T1-weighted images remains challenging, which results in controversies in the literature. In this study we use quantitative MRI (qMRI) to gain an insight into the microstructural mechanisms underlying tissue ageing and look for potential interactions between ageing and brain tissue properties to assess their impact on automated tissue classification. To this end we acquired maps of longitudinal relaxation rate R1, effective transverse relaxation rate R2* and magnetization transfer - MT, from healthy subjects (n=96, aged 21-88 years) using a well-established multi-parameter mapping qMRI protocol. Within the framework of voxel-based quantification we find higher grey matter volume in basal ganglia, cerebellar dentate and prefrontal cortex when tissue classification is based on MT maps compared with T1 maps. These discrepancies between grey matter volume estimates can be attributed to R2* - a surrogate marker of iron concentration, and further modulation by an interaction between R2* and age, both in cortical and subcortical areas. We interpret our findings as direct evidence for the impact of ageing-related brain tissue property changes on automated tissue classification of brain structures using SPM12. Computational anatomy studies of ageing and neurodegeneration should acknowledge these effects, particularly when inferring about underlying pathophysiology from regional cortex and basal ganglia volume changes.
Resumo:
SUMMARY Inflammation has evolved as a mechanism to defend the body against invading microorganisms and to respond to injury. It requires the coordinated response of a large number of cell types from the whole organism in a time- and space-dependent fashion. This coordination involves several cell-cell communication mechanisms. Exchange of humoral mediators such as cytokines is a major one. Moreover, direct contact between cells happens and plays a primordial role, for example when macrophages present antigens to lymphocytes. Contact between endothelial cells and leucocytes occurs when the latter cross the blood vessel barrier and transmigrate to the inflammatory site. A particular way by which cells communicate with each other in the course of inflammation, which at this time starts to gain attention, is the intercellular communication mediated by gap junctions. Gap junctions are channels providing a direct pathway (i.e. without transit through the extracellular space) for the diffusion of small molecules between adjacent cells. This process is known as gap junctional intercellular communication (GJIC). The general aim of this thesis was to study a possible involvement of GJIC in the pathophysiology of inflammation. A first part of the work was dedicated to study the implication of GJIC in the modification of vascular endothelial function by inflammation. In a second part, we were interested in the possible role of GJIC in the transmigration of neutrophil polymorphonuclear leucocytes through the endothelium. The main positive finding of this work is that acute inflammation preferentially modulates the expression of connexin 40 (Cx40), a gap junction protein specifically expressed in vascular endothelium. The modulation could be towards overexpression (aortic endothelium of septic rats) or towards downregulation (acutely inflamed mouse lung). We put a lot of efforts in search of possible functions of these modulations, in two directions: a potential protective role of Cx40 increased expression against sepsis-induced endothelial dysfunction, and a facilitating role of Cx40 decreased expression in neutrophil transmigration. To pursue both directions, it seemed logical to study the impact of Cx40 deletion using knock-out mice. Concerning the potential protective role of Cx40 overexpression we encountered a roadblock as we observed, in the aorta, a Cx40 downregulation in wild type mouse whereas Cx40 was upregulated in the rat. Regarding the second direction and using an in vivo approach, we observed that pulmonary neutrophil transmigration was not affected by the genetic deletion of Cx40. In spite of their negative nature, these results are the very first ones regarding the potential implication of GJIC concerning leucocyte transmigration in vivo. Because this process involves such tight cell-cell physical contacts, the hypothesis for a role of GJIC remains attractive.
Resumo:
AIM: The aim of this study was to determine the presence of the neuronal nitric oxide synthase (nNOS) in near full-term lambs with congenital diaphragmatic hernia (CDH) and its role in the modulation of pulmonary vascular basal tone. METHODS: We surgically created diaphragmatic hernia on the 85th day of gestation. On the 135th, catheters were used to measure pulmonary pressure and blood flow. We tested the effects of 7-nitroindazole (7-NINA), a specific nNOS antagonist and of N-nitro-L-arginine (L-NNA), a nonspecific nitric oxide synthase antagonist. In vitro, we tested the effects of the same drugs on isolated pulmonary vessels. The presence of nNOS protein in the lungs was detected by Western blot analysis. RESULTS: Neither 7-NINA nor L-NNA modified pulmonary vascular basal tone in vivo. After L-NNA injection, acetylcholine (ACh) did not decrease significantly pulmonary vascular resistance (PVR). In vitro, L-NNA increased the cholinergic contractile-response elicited by electric field stimulation (EFS) of vascular rings from lambs with diaphragmatic hernia. CONCLUSION: We conclude that nNOS protein is present in the lungs and pulmonary artery of near full-term lamb fetuses with diaphragmatic hernia, but that it does not contribute to the reduction of pulmonary vascular tone at birth
Resumo:
Coinfection with hepatitis B virus (HBV) and hepatitis C virus (HCV) has been associated with severe liver disease and frequent progression to cirrhosis and hepatocellular carcinoma. Clinical evidence suggests reciprocal replicative suppression of the two viruses, or viral interference. However, interactions between HBV and HCV have been difficult to study due to the lack of appropriate model systems. We have established a novel model system to investigate interactions between HBV and HCV. Stable Huh-7 cell lines inducibly replicating HBV were transfected with selectable HCV replicons or infected with cell culture-derived HCV. In this system, both viruses were found to replicate in the same cell without overt interference. Specific inhibition of one virus did not affect the replication and gene expression of the other. Furthermore, cells harboring replicating HBV could be infected with cell culture-derived HCV, arguing against superinfection exclusion. Finally, cells harboring replicating HBV supported efficient production of infectious HCV. Conclusion: HBV and HCV can replicate in the same cell without evidence for direct interference in vitro. Therefore, the viral interference observed in coinfected patients is probably due to indirect mechanisms mediated by innate and/or adaptive host immune responses. These findings provide new insights into the pathogenesis of HBV-HCV coinfection and may contribute to its clinical management in the future.
Resumo:
La production Argos Films édite chez Montparnasse le premier coffret DVD des principaux films du cinéaste. Profitant de cette accessibilité nouvelle, Décadrages a choisi de consacrer son 18e numéro à l'apport fondamental de Mario Ruspoli dans l'émergence, vers 1960, du cinéma documentaire en caméra légère, afin d'éclairer le contexte technique, discursif, théorique et artistique de cette production. Ce volume espère ainsi pallier cette méconnaissance de Mario Ruspoli en proposant, à travers cinq articles, la première publication universitaire sur ce cinéaste franco-italien.
Resumo:
L'ectodysplasine Al (EDA1 ou EDA), un ligand de la famille du TNF, et son récepteur EDAR favorisent le développement des poils, des dents et de plusieurs types de glandes. Chez l'humain, une déficience en EDA cause une dysplasie ectodermique liée à l'X, caractérisée par la genèse défectueuse des phanères. Les souris Tabby, déficientes en Eda, présentent des symptômes similaires. Nous démontrons que les souris Tabby sont en moyenne 7% plus légères que les contrôles au moment du sevrage. Ce phénotype ne dépend pas du génotype des petits, mais exclusivement de celui de la mère, suggérant que l'absence d'EDA perturbe la fonction mammaire. La glande mammaire se développe en plusieurs étapes, principalement à la puberté et pendant la grossesse. Nous avons généré des anticorps pour activer ou inhiber la signalisation d'EDAR. Les anticorps agonistes corrigent le développement de souris ou de chiens déficients en EDA, alors que les antagonistes provoquent une dysplasie ectodermique chez les souris saines. L'exposition répétée de souris Tabby aux anticorps agonistes après le sevrage accroît la taille et la fonction des glandes sébacées, démonstration pharmacologique qu'EDA contrôle l'homéostasie de la glande sébacée adulte. Ces outils seront utiles pour étudier la fonction d'EDA aux diverses étapes du développement de la glande mammaire. Fc-EDAl, un stimulateur d'EDAR, est en phase d'évaluation clinique. Nous avons montré que les structures dépendantes d'EDA qui se forment à différentes étapes du développement répondent à l'action du Fc-EDAl dans des fenêtres temporelles étroites ou larges. De plus, certaines structures peuvent être induites plusieurs jours après le début naturel de leur formation. Alors que la plupart des structures se forment suite à un seul jour d'activation d'EDAR, d'autre demandent un temps de stimulation plus long. La formation des dents est régulée par des signaux activateurs et inhibiteurs. Une forte stimulation d'EDAR spécifiquement appliquée aux deux premières molaires induit des signaux négatifs qui avortent la formation de la troisième molaire, alors qu'une forte stimulation donnée à la troisième molaire la rend hypertrophique tout en induisant parfois une quatrième molaire jamais observée chez les souris de type sauvage ou Tabby. EDA est donc un activateur important de la formation dentaire. Pris dans leur ensemble, ces résultats ont des implications pour la thérapie des dysplasies ectodermiques. - The TNF family ligand Ectodysplasin Al (EDA1 or EDA) and its receptor ED AR regulate embryonic development of hair, teeth and several types of glands. In humans, EDA mutations cause X-linked hypohidrotic ectodermal dysplasia (XLHED), a condition characterized by defective development of skin appendages. £da-deficient (Tabby) mice suffer from similar defects. We observed that Tabby pups at weaning were on average 7% smaller than WT controls, a phenotype that was curiously not linked to the genotype of pups, but to that of mothers, suggesting decreased mammary gland function in the absence of EDA. Mammary glands develop in several steps, most of which are post-natal. We generated monoclonal antibodies to block or activate EDAR signaling. Agonist antibodies rescued developmental defects when administered timely in £cfo-deficient mice and dogs, whereas blocking antibodies induced ectodermal dysplasia in WT mice. Agonist antibodies administered after weaning in £da-deficient mice for several months markedly increased both size and function of sebaceous glands, providing the first demonstration that pharmacological activation of the EDAR pathway in adults can correct important aspects of the dry skin phenotype. This also highlights a role for EDA1 in the homeostasis of adult sebaceous glands. These tools will be useful to study the function of EDA 1 at different stages of mammary gland development. Another EDAR agonist, Fc-EDAl, is currently evaluated in clinical trials. We found that EDA 1-dependent structures forming at different time points during development can respond to Fc-EDAl during time response windows that are narrow or wide. Also, some structures can be triggered up to several days after their normal time of induction. While most structures could be rescued by a single day of EDAR signaling, others required longer exposure times to form. Tooth formation is regulated by activating and inhibitory signals that impact one on the other. When strong EDAR signals were specifically given to the first two molars, overwhelming inhibitory signals completely inhibited formation of the third molar. In contrast, strong signals specifically given to the third molar induced hypertrophy of the later with occasional appearance of a fourth molar never observed in WT or £da-deficient mice. This clearly positions EDA as an important activating signal in tooth formation. Taken together, these results have implications for the therapy of ectodermal dysplasias.
Resumo:
An ammonium chloride procedure was used to prepare a bacterial pellet from positive blood cultures, which was used for direct inoculation of VITEK 2 cards. Correct identification reached 99% for Enterobacteriaceae and 74% for staphylococci. For antibiotic susceptibility testing, very major and major errors were 0.1 and 0.3% for Enterobacteriaceae, and 0.7 and 0.1% for staphylococci, respectively. Thus, bacterial pellets prepared with ammonium chloride allow direct inoculation of VITEK cards with excellent accuracy for Enterobacteriaceae and a lower accuracy for staphylococci.