246 resultados para DENSITY-STRATIFIED FLUID
Resumo:
The population density of an organism is one of the main aspects of its environment, and shoud therefore strongly influence its adaptive strategy. The r/K theory, based on the logistic model, was developed to formalize this influence. K-selectioon is classically thought to favour large body sizes. This prediction, however, cannot be directly derived from the logistic model: some auxiliary hypotheses are therefor implicit. These are to be made explicit if the theory is to be tested. An alternative approach, based on the Euler-Lotka equation, shows that density itself is irrelevant, but that the relative effect of density on adult and juvenile features is crucial. For instance, increasing population will select for a smaller body size if the density affects mainly juvenile growth and/or survival. In this case, density shoud indeed favour large body sizes. The theory appears nevertheless inconsistent, since a probable consequence of increasing body size will be a decrease in the carrying capacity
Resumo:
The trabecular bone score (TBS) is a new parameter that is determined from gray-level analysis of dual-energy X-ray absorptiometry (DXA) images. It relies on the mean thickness and volume fraction of trabecular bone microarchitecture. This was a preliminary case-control study to evaluate the potential diagnostic value of TBS as a complement to bone mineral density (BMD), by comparing postmenopausal women with and without fractures. The sample consisted of 45 women with osteoporotic fractures (5 hip fractures, 20 vertebral fractures, and 20 other types of fracture) and 155 women without a fracture. Stratification was performed, taking into account each type of fracture (except hip), and women with and without fractures were matched for age and spine BMD. BMD and TBS were measured at the total spine. TBS measured at the total spine revealed a significant difference between the fracture and age- and spine BMD-matched nonfracture group, when considering all types of fractures and vertebral fractures. In these cases, the diagnostic value of the combination of BMD and TBS likely will be higher compared with that of BMD alone. TBS, as evaluated from standard DXA scans directly, potentially complements BMD in the detection of osteoporotic fractures. Prospective studies are necessary to fully evaluate the potential role of TBS as a complementary risk factor for fracture.
Resumo:
The Trepca Pb-Zn-Ag skarn deposit (29 Mt of ore at 3.45% Pb, 2.30% Zn, and 80 g/t Ag) is located in the Kopaonik block of the western Vardar zone, Kosovo. The mineralization, hosted by recrystallized limestone of Upper Triassic age, was structurally and lithologically controlled. Ore deposition is spatially and temporally related with the postcollisional magmatism of Oligocene age (23-26 Ma). The deposit was formed during two distinct mineralization stages: an early prograde closed-system and a later retrograde open-system stage. The prograde mineralization consisting mainly of pyroxenes (Hd(54-100)Jo(0-45)Di(0-45)) resulted from the interaction of magmatic fluids associated with Oligocene (23-26 Ma) postcollisional magmatism. Whereas there is no direct contact between magmatic rocks and the mineralization, the deposit is classified as a distal Pb-Zn-Ag skarn. Abundant pyroxene reflects low oxygen fugacity (<10(-31) bar) and anhydrous environment. Fluid inclusion data and mineral assemblage limit the prograde stage within a temperature range between 390 degrees and 475 degrees C. Formation pressure is estimated below 900 bars. Isotopic composition of aqueous fluid, inclusions hosted by hedenbergite (delta D = -108 to -130 parts per thousand; delta O-18 = 7.5-8.0 parts per thousand), Mn-enriched mineralogy and high REE content of the host carbonates at the contact with the skarn mineralization suggest that a magmatic fluid was modified during its infiltration through the country rocks. The retrograde mineral assemblage comprises ilvaite, magnetite, arsenopyrite, pyrrhotite, marcasite, pyrite, quartz, and various carbonates. Increases in oxygen and sulfur fugacities, as well as a hydrous character of mineralization, require an open-system model. The opening of the system is related to phreatomagmatic explosion and formation of the breccia. Arsenopyrite geothermometer limits the retrograde stage within the temperature range between 350 degrees and 380 degrees C and sulfur fugacity between 10(-8.8) and 10(-7.2) bars. The principal ore minerals, galena, sphalerite, pyrite, and minor chalcopyrite, were deposited from a moderately saline Ca-Na chloride fluid at around 350 degrees C. According to the isotopic composition of fluid inclusions hosted by sphalerite (delta D = -55 to -74 parts per thousand; delta O-18 = -9.6 to -13.6 parts per thousand), the fluid responsible for ore deposition was dominantly meteoric in origin. The delta S-31 values of the sulfides spanning between -5.5 and +10 parts per thousand point to a magmatic origin of sulfur. Ore deposition appears to have been largely contemporaneous with the retrograde stage of the skarn development. Postore stage accompanied the precipitation of significant amount of carbonates including the travertine deposits at the deposit surface. Mineralogical composition of travertine varies from calcite to siderite and all carbonates contain significant amounts of Mn. Decreased formation temperature and depletion in the REE content point to an influence of pH-neutralized cold ground water and dying magmatic system.
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
BACKGROUND: Intrathecal analgesia and avoidance of perioperative fluid overload are key items within enhanced recovery pathways. Potential side effects include hypotension and renal dysfunction. STUDY DESIGN: From January 2010 until May 2010, all patients undergoing colorectal surgery within enhanced recovery pathways were included in this retrospective cohort study and were analyzed by intrathecal analgesia (IT) vs none (noIT). Primary outcomes measures were systolic and diastolic blood pressure, mean arterial pressure, and heart rate for 48 hours after surgery. Renal function was assessed by urine output and creatinine values. RESULTS: One hundred and sixty-three consecutive colorectal patients (127 IT and 36 noIT) were included in the analysis. Both patient groups showed low blood pressure values within the first 4 to 12 hours and a steady increase thereafter before return to baseline values after about 24 hours. Systolic and diastolic blood pressure and mean arterial pressure were significantly lower until 16 hours after surgery in patients having IT compared with the noIT group. Low urine output (<0.5 mL/kg/h) was reported in 11% vs 29% (IT vs noIT; p = 0.010) intraoperatively, 20% vs 11% (p = 0.387), 33% vs 22% (p = 0.304), and 31% vs 21% (p = 0.478) for postanesthesia care unit and postoperative days 1 and 2, respectively. Only 3 of 127 (2.4%) IT and 1 of 36 (2.8%) noIT patients had a transitory creatinine increase >50%; no patients required dialysis. CONCLUSIONS: Postoperative hypotension affects approximately 10% of patients within an enhanced recovery pathway and is slightly more pronounced in patients with IT. Hemodynamic depression persists for <20 hours after surgery; it has no measurable negative impact and therefore cannot justify detrimental postoperative fluid overload.
Resumo:
PURPOSE: Characterization of persistent diffuse subretinal fluid using optical coherence tomography (OCT) after successful encircling buckle surgery for inferior macula-off retinal detachment in young patients. METHODS: Institutional retrospective review of six young patients (mean age 31 +/- 6 years; five female, one male) with spontaneous inferior rhegmatogenous macula-off retinal detachment. All patients were treated with encircling buckle surgery and five out of six underwent additional external drainage of subretinal fluid. Mean follow-up was 37 +/- 25 months (range 17-75 months) and included complete ophthalmic and OCT examination. RESULTS: At 6 months, 100% of patients showed persistence of subretinal fluid on OCT. Four patients had diffuse fluid accumulation, whereas two patients showed a 'bleb-like' accumulation of fluid. This fluid was present independent of whether or not patients had been treated with external fluid drainage. Subretinal fluid only started to disappear on OCT between 6 and more than 12 months after surgery. CONCLUSION: Young patients with inferior macula-off retinal detachments and a marginally liquefied vitreous may show persisting postoperative subclinical fluid under the macula for longer periods of time than described previously.
Resumo:
The circadian timing system is critically involved in the maintenance of fluid and electrolyte balance and BP control. However, the role of peripheral circadian clocks in these homeostatic mechanisms remains unknown. We addressed this question in a mouse model carrying a conditional allele of the circadian clock gene Bmal1 and expressing Cre recombinase under the endogenous Renin promoter (Bmal1(lox/lox)/Ren1(d)Cre mice). Analysis of Bmal1(lox/lox)/Ren1(d)Cre mice showed that the floxed Bmal1 allele was excised in the kidney. In the kidney, BMAL1 protein expression was absent in the renin-secreting granular cells of the juxtaglomerular apparatus and the collecting duct. A partial reduction of BMAL1 expression was observed in the medullary thick ascending limb. Functional analyses showed that Bmal1(lox/lox)/Ren1(d)Cre mice exhibited multiple abnormalities, including increased urine volume, changes in the circadian rhythm of urinary sodium excretion, increased GFR, and significantly reduced plasma aldosterone levels. These changes were accompanied by a reduction in BP. These results show that local renal circadian clocks control body fluid and BP homeostasis.
Resumo:
Background: Complex wounds pose a major challenge in reconstructive and trauma surgery. Several approaches to increase the healing process have been proposed in the last decades. In this study we study the mechanism of action of the Vacuum Assisted Closure device in diabetic wounds. Methods: Full-thickness wounds were excised in diabetic mice and treated with the VAC device or its isolated components: an occlusive dressing (OD) alone, subathmospheric pressure at 125 mm Hg (Suction), and a polyurethane foam without (Foam) and with (Foamc) downward compression of approximately 125 mm Hg. The last goups were treated with either the complete VAC device (VAC) or with a silicne interface that alows fluid removel (Mepithel-VAC). The effects of the treatment modes on the wound surface were quantified by a two-dimensional immunohistochemical staging system based on vasculature, as defined by blood vessel density (CD31) and cell proliferation (defined by ki67 positivity), 7 days post wounding. Finite element modelling was used to predict wound surface deformation under dressing modes and cross sections of in situ fixed tissues were used to measure actual microstrain. Results: The foam-wound interface of the Vacuum Assisted Closure device causes significant wound stains (60%) causing a deformation of the single cell level leading to a profound upregulation of cell proliferation (4-fold) and angiogenisis (2.2-fold) compared to OD treated wounds. Polyurethane foam exposure itself causes a frather unspecific angiogenic response (Foamc, 2 - fold, Foam, 2.2 - fold) without changes of the cell proliferation rate of the wound bed. Suction alone without a specific interface does not have an effect on meassured parameters, showing similar results to untreated wounds. A perforated silicone interface caused a significant lower microdeforamtion of the wound bed correlating to changes of the wound tissues. Conclusion: The Vacuum Assisted Closure device induce significanttissue growth in diabetic wounds. The wound foam interface under suction causes profound macrodeformation that stimulates tissue growth by angiogenesis and cell proliferation. It needs to be taken in consideration that in the clinical setting different wound types may profit from different elements of this suction device.
Resumo:
A novel laboratory technique is proposed to investigate wave-induced fluid flow on the mesoscopic scale as a mechanism for seismic attenuation in partially saturated rocks. This technique combines measurements of seismic attenuation in the frequency range from 1 to 100?Hz with measurements of transient fluid pressure as a response of a step stress applied on top of the sample. We used a Berea sandstone sample partially saturated with water. The laboratory results suggest that wave-induced fluid flow on the mesoscopic scale is dominant in partially saturated samples. A 3-D numerical model representing the sample was used to verify the experimental results. Biot's equations of consolidation were solved with the finite-element method. Wave-induced fluid flow on the mesoscopic scale was the only attenuation mechanism accounted for in the numerical solution. The numerically calculated transient fluid pressure reproduced the laboratory data. Moreover, the numerically calculated attenuation, superposed to the frequency-independent matrix anelasticity, reproduced the attenuation measured in the laboratory in the partially saturated sample. This experimental?numerical fit demonstrates that wave-induced fluid flow on the mesoscopic scale and matrix anelasticity are the dominant mechanisms for seismic attenuation in partially saturated Berea sandstone.
Resumo:
We performed an analysis of a substudy of the randomized Tamoxifen Exemestane Adjuvant Multinational trial to determine the effects of exemestane (EXE) and tamoxifen (TAM) adjuvant treatment on bone mineral density (BMD) measured by dual-energy X-ray absorptiometry compared with the trabecular bone score, a novel grey-level texture measurement that correlates with 3-dimensional parameters of bone texture in postmenopausal women with hormone receptor-positive breast cancer for the first time. In total, 36 women were randomized to receive TAM (n = 17) or EXE (n = 19). Patients receiving TAM showed a mean increase of BMD in lumbar spine from baseline of 1.0%, 1.5%, and 1.9% and in trabecular bone score of 2.2%, 3.5%, and 3.3% at 6-, 12-, and 24-mo treatment, respectively. Conversely, patients receiving EXE showed a mean decrease from baseline in lumbar spine BMD of -2.3%, -3.6%, and -5.3% and in trabecular bone score of -0.9%, -1.7%, and -2.3% at 6-, 12-, and 24-mo treatment, respectively. Changes in trabecular bone score from baseline at spine were also significantly different between EXE and TAM: p = 0.05, 0.007, and 0.006 at 6, 12, and 24mo, respectively. TAM induced an increase in BMD and bone texture analysis, whereas EXE resulted in decreases. The results were independent from each other.
Resumo:
We study the discrepancy between the effective flow permeability and the effective seismic permeability, that is, the effective permeability controlling seismic attenuation due to wave-induced fluid flow, in 2D rock samples having mesoscopic heterogeneities and in the presence of strong permeability fluctuations. In order to do so, we employ a numerical oscillatory compressibility test to determine attenuation and velocity dispersion due to wave-induced fluid flow in these kinds of media and compare the responses with those obtained by replacing the heterogeneous permeability field by constant values, including the average permeability as well as the effective flow permeability of the sample. The latter is estimated in a separate upscaling procedure by solving the steady-state flow equation in the rock sample under study. Numerical experiments let us verify that attenuation levels are less significant and the attenuation peak gets broader in the presence of such strong permeability fluctuations. Moreover, we observe that for very low frequencies the effective seismic permeability is similar to the effective flow permeability, while for very high frequencies it approaches the arithmetic average of the permeability field.
Resumo:
Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10(-8)), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.