249 resultados para Code bias variation
Resumo:
BACKGROUND: Pneumocystis jirovecii dihydropteroate synthase (DHPS) mutations are associated with failure of prophylaxis with sulfa drugs. This retrospective study sought to better understand the geographical variation in the prevalence of these mutations. METHODS: DHPS polymorphisms in 394 clinical specimens from immunosuppressed patients who received a diagnosis of P. jirovecii pneumonia and who were hospitalized in 3 European cities were examined using polymerase chain reaction (PCR) single-strand conformation polymorphism. Demographic and clinical characteristics were obtained from patients' medical charts. RESULTS: Of the 394 patients, 79 (20%) were infected with a P. jirovecii strain harboring one or both of the previously reported DHPS mutations. The prevalence of DHPS mutations was significantly higher in Lyon than in Switzerland (33.0% vs 7.5%; P < .001). The proportion of patients with no evidence of sulfa exposure who harbored a mutant P. jirovecii DHPS genotype was significantly higher in Lyon than in Switzerland (29.7% vs 3.0%; P < .001). During the study period in Lyon, in contrast to the Swiss hospitals, measures to prevent dissemination of P. jirovecii from patients with P. jirovecii pneumonia were generally not implemented, and most patients received suboptimal prophylaxis, the failure of which was strictly associated with mutated P. jirovecii. Thus, nosocomial interhuman transmission of mutated strains directly or indirectly from other individuals in whom selection of mutants occurred may explain the high proportion of mutations without sulfa exposure in Lyon. CONCLUSIONS: Interhuman transmission of P. jirovecii, rather than selection pressure by sulfa prophylaxis, may play a predominant role in the geographical variation in the prevalence in the P. jirovecii DHPS mutations.
Resumo:
Theory predicts that temporal variability plays an important role in the evolution of life histories, but empirical studies evaluating this prediction are rare. In constant environments, fitness can be measured by the population growth rate lambda, and the sensitivity of lambda to changes in fitness components estimates selection on these traits. In variable environments, fitness is measured by the stochastic growth rate lambda(S), and stochastic sensitivities estimate selection pressure. Here we examine age-specific schedules for reproduction and survival in a barn owl population (Tyto alba). We estimated how temporal variability affected fitness and selection, accounting for sampling variance. Despite large sample sizes of old individuals, we found no strong evidence for senescence. The most variable fitness components were associated with reproduction. Survival was less variable. Stochastic simulations showed that the observed variation decreased fitness by about 30%, but the sensitivities of lambda and lambda(S) to changes in all fitness components were almost equal, suggesting that temporal variation had negligible effects on selection. We obtained these results despite high observed variability in the fitness components and relatively short generation time of the study organism, a situation in which temporal variability should be particularly important for natural selection and early senescence is expected.
Resumo:
BACKGROUND: Cardiovascular diseases (CVD) mortality has been shown to follow a seasonal pattern. Several studies suggested several possible determinants of this pattern, including misclassification of causes of deaths. We aimed at assessing seasonality in overall, CVD, cancer and non-CVD/non-cancer mortality using data from 19 countries from different latitudes. METHODS AND FINDINGS: Monthly mortality data were compiled from 19 countries, amounting to over 54 million deaths. We calculated ratios of the observed to the expected numbers of deaths in the absence of a seasonal pattern. Seasonal variation (peak to nadir difference) for overall and cause-specific (CVD, cancer or non-CVD/non-cancer) mortality was analyzed using the cosinor function model. Mortality from overall, CVD and non-CVD/non-cancer showed a consistent seasonal pattern. In both hemispheres, the number of deaths was higher than expected in winter. In countries close to the Equator the seasonal pattern was considerably lower for mortality from any cause. For CVD mortality, the peak to nadir differences ranged from 0.185 to 0.466 in the Northern Hemisphere, from 0.087 to 0.108 near the Equator, and from 0.219 to 0.409 in the Southern Hemisphere. For cancer mortality, the seasonal variation was nonexistent in most countries. CONCLUSIONS: In countries with seasonal variation, mortality from overall, CVD and non-CVD/non-cancer show a seasonal pattern with mortality being higher in winter than in summer. Conversely, cancer mortality shows no substantial seasonality.
Resumo:
Transcriptome analysis is a powerful tool for unveiling the distribution and magnitude of genetic incompatibilities between hybridizing taxa. The nature of such incompatibilities is closely associated with the evolutionary histories of the parental species and may differ across tissues and between the sexes. In eusocial insects, the presence of castes that experience divergent selection regimes may result in additional distinct patterns of caste-specific hybrid incompatibilities. We analysed levels of expression of >14 000 genes in two life stages of each caste in the fire ants Solenopsis invicta and Solenopsis richteri and in their hybrids. We found strong contributions of both developmental stage and caste to gene expression patterns. In contrast, variability in expression was only weakly associated with taxonomic identity, with hybrid scores falling between those of the two parental species. Hybrid incompatibilities were surprisingly modest, with only 32 genes being mis-expressed, indicating low levels of disruption in gene regulation in hybrids; males and workers each mis-expressed at least seven times as many genes as queens. Interestingly, homologues of many of the mis-expressed genes have been implicated in behavioural variation in Drosophila melanogaster. General expression profiles of hybrids consistently were more similar to those of S. richteri than S. invicta, presumably because S. richteri trans-regulatory elements tend to be dominant and/or because there is an overall bias in the genetic composition of the hybrids towards S. richteri. Altogether, our results suggest that selection acting on each caste may contribute differently to interspecific divergence and speciation in this group of ants.
Resumo:
Le législateur du Code civil a introduit le terme « proche » dans de nombreuses dispositions, mais n'en propose aucune définition, ce qui laisse une grande marge de manoeuvre pour son interprétation et son application. La signification et la portée du terme ne seront ainsi pas les mêmes selon le domaine juridique et la situation de fait analysés. Face à cette grande diversité d'usage du terme, l'auteure de la contribution propose de l'appréhender selon les domaines et les buts dans lesquels il est utilisé par le législateur afin de réussir à tracer les contours des différents cercles de proches envisageables.
Resumo:
In sharp contrast with birds and mammals, sex-determination systems in ectothermic vertebrates are often highly dynamic and sometimes multifactorial. Both environmental and genetic effects have been documented in common frogs (Rana temporaria). One genetic linkage group, mapping to the largest pair of chromosomes and harbouring the candidate sex-determining gene Dmrt1, associates with sex in several populations throughout Europe, but association varies both within and among populations. Here, we show that sex association at this linkage group differs among populations along a 1500-km transect across Sweden. Genetic differentiation between sexes is strongest (FST = 0.152) in a northern-boreal population, where male-specific alleles and heterozygote excesses (FIS = -0.418 in males, +0.025 in females) testify to a male-heterogametic system and lack of X-Y recombination. In the southernmost population (nemoral climate), in contrast, sexes share the same alleles at the same frequencies (FST = 0.007 between sexes), suggesting unrestricted recombination. Other populations show intermediate levels of sex differentiation, with males falling in two categories: some cluster with females, while others display male-specific Y haplotypes. This polymorphism may result from differences between populations in the patterns of X-Y recombination, co-option of an alternative sex-chromosome pair, or a mixed sex-determination system where maleness is controlled either by genes or by environment depending on populations or families. We propose approaches to test among these alternative models, to disentangle the effects of climate and phylogeography on the latitudinal trend, and to sort out how this polymorphism relates to the 'sexual races' described in common frogs in the 1930s.
Resumo:
Copy number variation (CNV) is a key source of genetic diversity, but a comprehensive understanding of its phenotypic effect is only beginning to emerge. We have generated a CNV map in wild mice and classical inbred strains. Genome-wide expression data from six major organs show not only that expression of genes within CNVs tend to correlate with copy number changes, but also that CNVs influence the expression of genes in their vicinity, an effect that extends up to half a megabase. Genes within CNVs show lower expression and more specific spatial expression patterns than genes mapping elsewhere. Our analyses reveal differential constraint on copy number changes of genes expressed in different tissues. Dosage alterations of brain-expressed genes are less frequent than those of other genes and are buffered by tighter transcriptional regulation. Our study provides initial evidence that CNVs shape tissue transcriptomes on a global scale.
Resumo:
The large spatial inhomogeneity in transmit B(1) field (B(1)(+)) observable in human MR images at high static magnetic fields (B(0)) severely impairs image quality. To overcome this effect in brain T(1)-weighted images, the MPRAGE sequence was modified to generate two different images at different inversion times, MP2RAGE. By combining the two images in a novel fashion, it was possible to create T(1)-weighted images where the result image was free of proton density contrast, T(2) contrast, reception bias field, and, to first order, transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B(1)(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T(1)-weighted images, acquired within 12 min, high-resolution 3D T(1) maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T(1) maps were validated in phantom experiments. In humans, the T(1) values obtained at 7 T were 1.15+/-0.06 s for white matter (WM) and 1.92+/-0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min, the T(1) values obtained (0.81+/-0.03 s for WM and 1.35+/-0.05 for GM) were once again found to be in very good agreement with values in the literature.
Resumo:
The new text of the Swiss penal code, which entered into effect at the beginning of 2007, has many incidences on the practice of the psychiatrists realizing expertises in the penal field or engaged in the application of legal measures imposing a treatment. The most notable consequences of this text are, on the one hand, a new definition of the concept of penal irresponsibility which is not necessarily any more related to a psychiatric diagnosis and, on the other hand, a new definition of legal constraints that justice can take to prevent new punishable acts and which appreciably modifies the place of the psychiatrists in the questions binding psychiatric care and social control.
Resumo:
Autism spectrum disorders (ASDs) are a heterogeneous group of disorders with a complex genetic etiology. We used high-resolution whole genome array-based comparative genomic hybridization (array-CGH) to screen 223 ASD patients for gene dose alterations associated with susceptibility for autism. Clinically significant copy number variations (CNVs) were identified in 18 individuals (8%), of which 9 cases (4%) had de novo aberrations. In addition, 20 individuals (9%) were shown to have CNVs of unclear clinical relevance. Among these, 13 cases carried rare but inherited CNVs that may increase the risk for developing ASDs, while parental samples were unavailable in the remaining seven cases. Classification of all patients into different phenotypic and inheritance pattern groups indicated the presence of different CNV patterns in different patient groups. Clinically relevant CNVs were more common in syndromic cases compared to non-syndromic cases. Rare inherited CNVs were present in a higher proportion of ASD cases having first- or second-degree relatives with an ASD-related neuropsychiatric phenotype in comparison with cases without reported heredity (P = 0.0096). We conclude that rare CNVs, encompassing potential candidate regions for ASDs, increase the susceptibility for the development of ASDs and related neuropsychiatric disorders giving us further insight into the complex genetics underlying ASDs.
Resumo:
Copy number variants (CNVs) influence the expression of genes that map not only within the rearrangement, but also to its flanks. To assess the possible mechanism(s) underlying this "neighboring effect", we compared intrachromosomal interactions and histone modifications in cell lines of patients affected by genomic disorders and control individuals. Using chromosome conformation capture (4C-seq), we observed that a set of genes flanking the Williams-Beuren Syndrome critical region (WBSCR) were often looping together. The newly identified interacting genes include AUTS2, mutations of which are associated with autism and intellectual disabilities. Deletion of the WBSCR disrupts the expression of this group of flanking genes, as well as long-range interactions between them and the rearranged interval. We also pinpointed concomitant changes in histone modifications between samples. We conclude that large genomic rearrangements can lead to chromatin conformation changes that extend far away from the structural variant, thereby possibly modulating expression globally and modifying the phenotype. GEO SERIES ACCESSION NUMBER: GSE33784, GSE33867.
Resumo:
Understanding the evolution of intraspecific variance is a major research question in evolutionary biology. While its importance to processes operating at individual and population levels is well-documented, much less is known about its role in macroevolutionary patterns. Nevertheless, both experimental and theoretical evidence suggest that the intraspecific variance is susceptible to selection, can transform into interspecific variation and, therefore, is crucial for macroevolutionary processes. The main objectives of this thesis were: (l) to investigate which factors impact evolution of intraspecific variation in Polygonaceae and determine if evolution of intraspecific variation influences species diversification; and (2) to develop a novel comparative phylogenetic method to model evolution of intraspecific variation. Using the buckwheat family, Polygonaceae, as a study system, I demonstrated which life-history and ecological traits are relevant to the evolution of intraspecific variation. I analyzed how differential intraspecific variation drives species diversification patterns. I showed with computer simulations the shortcomings of existing comparative methods with respect to intraspecific variation. I developed a novel comparative model that readily incorporates the intraspecific variance into phylogenetic comparative methods. The obtained results are complimentary, because they affect both empirical and methodological aspects of comparative analysis. Overall, I highlight that intraspecific variation is an important contributor to the macroevolutionary patterns and it should be explicitly considered in the comparative phylogenetic analysis. - En biologie évolutive comprendre l'évolution de la variance intraspécifique est un axe de recherche majeur. Bien que l'importance de cette variation soit bien documentée au niveau individuel et populationnel, on en sait beaucoup moins sur son rôle au niveau macroévolutif. Néanmoins, des preuves expérimentales et théoriques suggèrent que la variance intraspécifique est sensible à la sélection et peut se transformer en variation interspécifique. Par conséquent, elle est cruciale pour mieux comprendre les processus macroévolutifs. Les principaux objectifs de ma thèse étaient : (i) d'enquêter sur les facteurs qui affectent l'évolution de la variation intraspécifique chez les Polygonaceae et de déterminer si l'évolution de cette dernière influence la diversification des espèces, et (2) de développer une nouvelle méthode comparative permettant de modéliser l'évolution de la variation intraspécifique dans un cadre phylogénétique. En utilisant comme système d'étude la famille du sarrasin, les Polygonacées, je démontre que les traits d'histoire de vie sont pertinents pour comprendre l'évolution de la variation intraspécifique. J'ai également analysé l'influence de la variation intraspécifique au niveau de la diversification des espèces. J'ai ensuite démontré avec des données simulées les limites des méthodes comparatives existantes vis à vis de la variation intraspécifique. Finalement, j'ai développé un modèle comparatif qui intègre facilement la variance intraspécifique dans les méthodes comparatives phylogénétiques existantes. Les résultats obtenus lors de ma thèse sont complémentaires car ils abordent aspects empiriques et méthodologiques de l'analyse comparative. En conclusion, je souligne que la variation intraspécifique est un facteur important en macroévolution et qu'elle doit être explicitement considérée lors d'analyses comparatives phylogénétiques.
Resumo:
Differences in seasonal migratory behaviours are thought to be an important component of reproductive isolation in many organisms. Stable isotopes have been used with success in estimating the location and qualities of disjunct breeding and wintering areas. However, few studies have used isotopic data to estimate the movements of hybrid offspring in species that form hybrid zones. Here, we use stable hydrogen to estimate the wintering locations and migratory patterns of two common and widespread migratory birds, Audubon's (Setophaga auduboni) and myrtle (S. coronata) warblers, as well as their hybrids. These two species form a narrow hybrid zone with extensive interbreeding in the Rocky Mountains of British Columbia and Alberta, Canada, which has been studied for over four decades. Isotopes in feathers grown on the wintering grounds or early on migration reveal three important patterns: (1) Audubon's and myrtle warblers from allopatric breeding populations winter in isotopically different environments, consistent with band recovery data and suggesting that there is a narrow migratory transition between the two species, (2) most hybrids appear to overwinter in the south-eastern USA, similar to where myrtle warblers are known to winter, and (3) some hybrid individuals, particularly those along the western edge of the hybrid zone, show Audubon's-like isotopic patterns. These data suggest there is a migratory divide between these two species, but that it is not directly coincident with the centre of the hybrid zone in the breeding range. We interpret these findings and discuss them within the context of previous research on hybrid zones, speciation and migratory divides.
Resumo:
Due to practical difficulties in obtaining direct genetic estimates of effective sizes, conservation biologists have to rely on so-called 'demographic models' which combine life-history and mating-system parameters with F-statistics in order to produce indirect estimates of effective sizes. However, for the same practical reasons that prevent direct genetic estimates, the accuracy of demographic models is difficult to evaluate. Here we use individual-based, genetically explicit computer simulations in order to investigate the accuracy of two such demographic models aimed at investigating the hierarchical structure of populations. We show that, by and large, these models provide good estimates under a wide range of mating systems and dispersal patterns. However, one of the models should be avoided whenever the focal species' breeding system approaches monogamy with no sex bias in dispersal or when a substructure within social groups is suspected because effective sizes may then be strongly overestimated. The timing during the life cycle at which F-statistics are evaluated is also of crucial importance and attention should be paid to it when designing field sampling since different demographic models assume different timings. Our study shows that individual-based, genetically explicit models provide a promising way of evaluating the accuracy of demographic models of effective size and delineate their field of applicability.