190 resultados para Clinical trials data
Resumo:
Drug development has improved over recent decades, with refinements in analytical techniques, population pharmacokinetic-pharmacodynamic (PK-PD) modelling and simulation, and new biomarkers of efficacy and tolerability. Yet this progress has not yielded improvements in individualization of treatment and monitoring, owing to various obstacles: monitoring is complex and demanding, many monitoring procedures have been instituted without critical assessment of the underlying evidence and rationale, controlled clinical trials are sparse, monitoring procedures are poorly validated and both drug manufacturers and regulatory authorities take insufficient account of the importance of monitoring. Drug concentration and effect data should be increasingly collected, analyzed, aggregated and disseminated in forms suitable for prescribers, along with efficient monitoring tools and evidence-based recommendations regarding their best use. PK-PD observations should be collected for both novel and established critical drugs and applied to observational data, in order to establish whether monitoring would be suitable. Methods for aggregating PK-PD data in systematic reviews should be devised. Observational and intervention studies to evaluate monitoring procedures are needed. Miniaturized monitoring tests for delivery at the point of care should be developed and harnessed to closed-loop regulated drug delivery systems. Intelligent devices would enable unprecedented precision in the application of critical treatments, i.e. those with life-saving efficacy, narrow therapeutic margins and high interpatient variability. Pharmaceutical companies, regulatory agencies and academic clinical pharmacologists share the responsibility of leading such developments, in order to ensure that patients obtain the greatest benefit and suffer the least harm from their medicines.
Resumo:
Carcinoembryonic antigen (CEACAM5) is commonly overexpressed in human colon cancer. Several antigenic peptides recognized by cytolytic CD8+ T-cells have been identified and used in colon cancer phase-I vaccination clinical trials. The HLA-A*0201-binding CEA(694-702) peptide was recently isolated from acid eluted MHC-I associated peptides from a human colon tumor cell line. However, the immunogenicity of this peptide in humans remains unknown. We found that the peptide CEA(694-702) binds weakly to HLA-A*0201 molecules and is ineffective at inducing specific CD8+ T-cell responses in healthy donors. Immunogenic-altered peptide ligands with increased affinity for HLA-A*0201 were identified. Importantly, the elicited cytolytic T lymphocyte (CTL) lines and clones cross-reacted with the wild-type CEA(694-702) peptide. Tumor cells expressing CEA were recognized in a peptide and HLA-A*0201 restricted fashion, but high-CEA expression levels appear to be required for CTL recognition. Finally, CEA-specific T-cell precursors could be readily expanded by in vitro stimulation of peripheral blood mononuclear cell (PBMC) from colon cancer patients with altered CEA peptide. However, the CEA-specific CD8+ T-cell clones derived from cancer patients revealed low-functional avidity and impaired tumor-cell recognition. Together, using T-cells to demonstrate the processing and presentation of the peptide CEA694-702, we were able to corroborate its presentation by tumor cells. However, the low avidity of the specific CTLs generated from cancer patients as well as the high-antigen expression levels required for CTL recognition pose serious concerns for the use of CEA694-702 in cancer immunotherapy.
Resumo:
In a recent vaccination trial assessing the immunogenicity of an NY-ESO-1 (ESO) recombinant protein administered with Montanide and CpG, we have obtained evidence that this vaccine induces specific cytolytic T lymphocytes (CTL) in half of the patients. Most vaccine-induced CTLs were directed against epitopes located in the central part of the protein, between amino acids 81 and 110. This immunodominant region, however, is distinct from another ESO CTL region, 157-165, that is a frequent target of spontaneous CTL responses in A2+ patients bearing ESO tumors. In this study, we have investigated the CTL responses to ESO 157-165 in A2+ patients vaccinated with the recombinant protein. Our data indicate that after vaccination with the protein, CTL responses to ESO 157-165 are induced in some, but not all, A2+ patients. ESO 157-165-specific CTLs induced by vaccination with the ESO protein were functionally heterogeneous in terms of tumor recognition and often displayed decreased tumor reactivity as compared with ESO 157-165-specific CTLs isolated from patients with spontaneous immune responses to ESO. Remarkably, protein-induced CTLs used T-cell receptors similar to those previously isolated from patients vaccinated with synthetic ESO peptides (Vbeta4.1) and distinct from those used by highly tumor-reactive CTLs isolated from patients with spontaneous immune responses (Vbeta1.1, Vbeta8.1, and Vbeta13.1). Together, these results demonstrate that vaccination with the ESO protein elicits a repertoire of ESO 157-165-specific CTLs bearing T-cell receptors that are structurally distinct from those of CTLs found in spontaneous immune responses to the antigen and that are heterogeneous in terms of tumor reactivity, being often poorly tumor reactive.
The cyclophilin inhibitor alisporivir prevents hepatitis C virus-mediated mitochondrial dysfunction.
Resumo:
Alisporivir (Debio-025) is an analogue of cyclosporine A and represents the prototype of a new class of non-immunosuppressive cyclophilin inhibitors. In vitro and in vivo studies have shown that alisporivir inhibits hepatitis C virus (HCV) replication, and ongoing clinical trials are exploring its therapeutic potential in patients with chronic hepatitis C. Recent data suggest that the antiviral effect is mediated by inhibition of cyclophilin A, which is an essential host factor in the HCV life cycle. However, alisporivir also inhibits mitochondrial permeability transition by binding to cyclophilin D. Because HCV is known to affect mitochondrial function, we explored the effect of alisporivir on HCV protein-mediated mitochondrial dysfunction. Through the use of inducible cell lines, which allow to investigate the effects of HCV polyprotein expression independent from viral RNA replication and which recapitulate the major alterations of mitochondrial bioenergetics observed in infectious cell systems, we show that alisporivir prevents HCV protein-mediated decrease of cell respiration, collapse of mitochondrial membrane potential, overproduction of reactive oxygen species and mitochondrial calcium overload. Strikingly, some of the HCV-mediated mitochondrial dysfunctions could even be rescued by alisporivir. Conclusion: These observations provide new insights into the pathogenesis of HCV-related liver disease and reveal an additional mechanism of action of alisporivir that is likely beneficial in the treatment of chronic hepatitis C. (HEPATOLOGY 2012).
Resumo:
Recent molecular correlative studies accompanying clinical trials in glioma have provided strong evidence for prognostic markers and predictive factors for treatment response. However, to what extent can these markers influence the limited choice of therapeutic options? Do we further validate the markers in the next trials or move on, incorporate the markers for patient selection or stratification, aim at improving the modestly effective treatments by adding new drugs, and develop alternative therapy strategies for patients selected for their bad predictor?
Resumo:
The use of specific terms under different meanings and varying definitions has always been a source of confusion in science. When we point our efforts towards an evidence based medicine for inflammatory bowel diseases (IBD) the same is true: Terms such as "mucosal healing" or "deep remission" as endpoints in clinical trials or treatment goals in daily patient care may contribute to misconceptions if meanings change over time or definitions are altered. It appears to be useful to first have a look at the development of terms and their definitions, to assess their intrinsic and context-independent problems and then to analyze the different relevance in present-day clinical studies and trials. The purpose of such an attempt would be to gain clearer insights into the true impact of the clinical findings behind the terms. It may also lead to a better defined use of those terms for future studies. The terms "mucosal healing" and "deep remission" have been introduced in recent years as new therapeutic targets in the treatment of IBD patients. Several clinical trials, cohort studies or inception cohorts provided data that the long term disease course is better, when mucosal healing is achieved. However, it is still unclear whether continued or increased therapeutic measures will aid or improve mucosal healing for patients in clinical remission. Clinical trials are under way to answer this question. Attention should be paid to clearly address what levels of IBD activity are looked at. In the present review article authors aim to summarize the current evidence available on mucosal healing and deep remission and try to highlight their value and position in the everyday decision making for gastroenterologists.
Resumo:
This article reviews nanoparticulate-chemotherapeutic systems that have been developed for human therapy, considering the components of the nanoparticles, the therapeutic agents associated with the nanoparticles and the clinical indications these therapeutic nanoparticles have been developed for. In this evaluation we have put into perspective the types of nanomaterials and their therapeutic indications. We have reviewed the nanoparticulate-chemotherapeutic systems that have been published, approved and marketed and that are currently in clinical use. We have also analyzed the nanoparticulate-chemotherapeutic systems that are in clinical trials and under preclinical development.
Resumo:
The recommendations for the treatment of type 2 diabetic patients are often centered on the glycemia. These clinical trials based on this approach show only a beneficial effects on the prevention of microangiopathy. The coronary artery disease which is the main cause of mortality among these patients, is not reduced. These data should be interpreted with a systemic prospect. The diabetes vascular complications have multifactorial causes and these clinical trials are motivated for the promotion of hypoglycemic agents. Fortunately, the STENO study offers another glance on the treatment of the diabetes, associating multirisk approach and patients' accompaniment. It obliges to have a critical glance on the research often moved by economic issues and gives to the center a humanistic approach based on the therapeutic relation.
Resumo:
Aims: Recently, several clinical trials analyzed if extended duration of treatment with pegylated interferon-alfa and ribavirin over 48 weeks can improve sustained virologic response (SVR) rates in HCV genotype 1-infected patients with slow virologic response. Because results of these clinical trials are conflicting, we performed a metaanalysis to determine the overall impact of extended treatment compared to standard treatment on virologic response rates in treatment-naive HCV genotype 1 slow responders. Methods: Literature search was performed independently by two observers using Pub Med, EMBASE, CENTRAL and abstracts presented in English at international liver and gastroenterology meetings. Randomized controlled clinical trials (RCTs; but studies that re-analyzed data retrospectively RCTs were also allowed) were considered if they included monoinfected treatment-naive HCV genotype 1 patients and compared treatment with pegIFN-alfa 2a or 2b in combination with ribavirin for 48 weeks versus extended treatment (up to 72 weeks) in slow responders. Primary and secondary end points were SVR rates and end-of-treatment (EOT) and relapse rates, respectively. In the present meta-analysis, study endpoints were summarized with a DerSimonian-Laird estimate for binary outcome basing on a random effects model. Results: Literature search yielded seven RTCs addressing the benefit of extended treatment with pegylated interferon-alfa and ribavirin in treatment-naive HCV genotype 1 slow responders. In total, 1330 slow responders were included in our meta-analysis. We show that extended treatment duration compared to the standard of care significantly improves SVR rates in HCV genotype 1 slow responders (12.4% improvement of overall SVR rate, 95% CI 0.055- 0.193, P = 0.0005). In addition, we show that rates of viral relapse were significantly reduced by extended treatment (24.1% reduction of relapse, 95% CI −0.3332 to −0.1487, P < 0.0001), whereas no significant impact of extended treatment on EOT response rates was found. Though extended treatment was burdened with an enhanced rate of premature treatment discontinuation due to interferonalfa- and ribavirin-related side effects, the frequency of serious adverse events was not increased. Conclusions: Treatment extension in HCV genotype 1 slow responders can improve SVR rates in difficult to treat patients and should be considered in patients who need to be treated before specific antivirals will be approved.
Resumo:
For the general practitioner to be able to prescribe optimal therapy to his individual hypertensive patients, he needs accurate information on the therapeutic agents he is going to administer and practical treatment strategies. The information on drugs and drug combinations has to be applicable to the treatment of individual patients and not just patient study groups. A basic requirement is knowledge of the dose-response relationship for each compound in order to choose the optimal therapeutic dose. Contrary to general assumption, this key information is difficult to obtain and often not available to the physician for many years after marketing of a drug. As a consequence, excessive doses are often used. Furthermore, the physician needs comparative data on the various antihypertensive drugs that are applicable to the treatment of individual patients. In order to minimize potential side effects due to unnecessary combinations of compounds, the strategy of sequential monotherapy is proposed, with the goal of treating as many patients as possible with monotherapy at optimal doses. More drug trials of a crossover design and more individualized analyses of the results are badly needed to provide the physician with information that he can use in his daily practice. In this time of continuous intensive development of new antihypertensive agents, much could be gained in enhanced efficacy and reduced incidence of side effects by taking a closer look at the drugs already available and using them more appropriately in individual patients.
Resumo:
Systemic lupus erythematosus (SLE) is characterized by multisystem immune-mediated injury in the setting of autoimmunity to nuclear antigens. The clinical heterogeneity of SLE, the absence of universally agreed clinical trial end points, and the paucity of validated therapeutic targets have, historically, contributed to a lack of novel treatments for SLE. However, in 2011, a therapeutic monoclonal antibody that neutralizes the cytokine TNF ligand superfamily member 13B (also known as B-cell-activating factor of the TNF family [BAFF]), belimumab, became the first targeted therapy for SLE to have efficacy in a randomized clinical trial. Because of its specificity, the efficacy of belimumab provides an opportunity to increase understanding of SLE pathophysiology. Although belimumab depletes B cells, this effect is not as powerful as that of other B-cell-directed therapies that have not been proven efficacious in randomized clinical trials. In this article, therefore, we review results suggesting that neutralizing BAFF can have effects on the immune system other than depletion of B cells. We also identify aspects of the BAFF system for which data in relation to SLE are still missing, and we suggest studies to investigate the pathogenesis of SLE and ways to refine anti-BAFF therapies. The role of a related cytokine, TNF ligand superfamily member 13 (also known as a proliferation-inducing ligand [APRIL]) in SLE is much less well understood, and hence this review focuses on BAFF.
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.
Resumo:
Epoxyeicosatrienoic acids (EETs) are small molecules produced by cytochrome P450 epoxygenases. They are lipid mediators that act as autocrine or paracrine factors to regulate inflammation and vascular tone. As a result, drugs that raise EET levels are in clinical trials for the treatment of hypertension and many other diseases. However, despite their pleiotropic effects on cells, little is known about the role of these epoxyeicosanoids in cancer. Here, using genetic and pharmacological manipulation of endogenous EET levels, we demonstrate that EETs are critical for primary tumor growth and metastasis in a variety of mouse models of cancer. Remarkably, we found that EETs stimulated extensive multiorgan metastasis and escape from tumor dormancy in several tumor models. This systemic metastasis was not caused by excessive primary tumor growth but depended on endothelium-derived EETs at the site of metastasis. Administration of synthetic EETs recapitulated these results, while EET antagonists suppressed tumor growth and metastasis, demonstrating in vivo that pharmacological modulation of EETs can affect cancer growth. Furthermore, inhibitors of soluble epoxide hydrolase (sEH), the enzyme that metabolizes EETs, elevated endogenous EET levels and promoted primary tumor growth and metastasis. Thus, our data indicate a central role for EETs in tumorigenesis, offering a mechanistic link between lipid signaling and cancer and emphasizing the critical importance of considering possible effects of EET-modulating drugs on cancer.
Resumo:
OBJECTIVES: Etravirine (ETV) is a novel nonnucleoside reverse transcriptase inhibitor (NNRTI) with reduced cross-resistance to first-generation NNRTIs, which has been primarily studied in randomized clinical trials and not in routine clinical settings. METHODS: ETV resistance-associated mutations (RAMs) were investigated by analysing 6072 genotypic tests. The antiviral activity of ETV was predicted using different interpretation systems: International AIDS Society-USA (IAS-USA), Stanford, Rega and Agence Nationale de Recherches sur le Sida et les hépatites virales (ANRS). RESULTS: The prevalence of ETV RAMs was higher in NNRTI-exposed patients [44.9%, 95% confidence interval (CI) 41.0-48.9%] than in treatment-naïve patients (9.6%, 95% CI 8.5-10.7%). ETV RAMs in treatment-naïve patients mainly represent polymorphism, as prevalence estimates in genotypic tests for treatment-naïve patients with documented recent (<1 year) infection, who had acquired HIV before the introduction of NNRTIs, were almost identical (9.8%, 95% CI 3.3-21.4). Discontinuation of NNRTI treatment led to a marked drop in the detection of ETV RAMs, from 51.7% (95% CI 40.8-62.6%) to 34.5% (95% CI 24.6-45.4%, P=0.032). Differences in prevalence among subtypes were found for V90I and V179T (P<0.001). Estimates of restricted virological response to ETV varied among algorithms in patients with exposure to efavirenz (EFV)/nevirapine (NVP), ranging from 3.8% (95% CI 2.5-5.6%) for ANRS to 56.2% (95% CI 52.2-60.1%) for Stanford. The predicted activity of ETV decreased as the sensitivity of potential optimized background regimens decreased. The presence of major IAS-USA mutations (L100I, K101E/H/P and Y181C/I/V) reduced the treatment response at week 24. CONCLUSIONS: Most ETV RAMs in drug-naïve patients are polymorphisms rather than transmitted RAMs. Uncertainty regarding predictions of antiviral activity for ETV in NNRTI-treated patients remains high. The lowest activity was predicted for patients harbouring extensive multidrug-resistant viruses, thus limiting ETV use in those who are most in need.