155 resultados para Classification Rules
Resumo:
OBJECTIVE: To assess whether Jass staging enhances prognostic prediction in Dukes' B colorectal carcinoma. DESIGN: A historical cohort observational study. SETTING: A university tertiary care centre, Switzerland. SUBJECTS: 108 consecutive patients. INTERVENTIONS: Curative resection of Dukes' B colorectal carcinoma between January 1985 and December 1988, Patients with familial adenomatous polyposis; hereditary non-polyposis colorectal cancer; Crohns' disease; ulcerative colitis and synchronous and recurrent tumours were excluded. A comparable group of 155 consecutive patients with Dukes' C carcinoma were included for reference purposes. MAIN OUTCOME MEASURES: Disease free and overall survival for Dukes' B and overall survival for Dukes' C tumours. RESULTS: Dukes' B tumours in Jass group III or with an infiltrated margin had a significantly worse disease-free survival (p = 0.001 and 0.0001, respectively) and those with infiltrated margins had a significantly worse overall survival (p = 0.002). Overall survival among those with Dukes' B Jass III and Dukes' B with infiltrated margins was no better than overall survival among all patients with Dukes' C tumours. CONCLUSION: Jass staging and the nature of the margin of invasion allow patients undergoing curative surgery for Dukes' B colorectal carcinoma to be separated into prognostic groups. A group of patients with Dukes' B tumours whose prognosis is inseparable from those with Dukes' C tumours can be identified, the nature of the margin of invasion being used to classify a larger number of patients.
Resumo:
In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.
Resumo:
This letter presents advanced classification methods for very high resolution images. Efficient multisource information, both spectral and spatial, is exploited through the use of composite kernels in support vector machines. Weighted summations of kernels accounting for separate sources of spectral and spatial information are analyzed and compared to classical approaches such as pure spectral classification or stacked approaches using all the features in a single vector. Model selection problems are addressed, as well as the importance of the different kernels in the weighted summation.
Resumo:
This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.
Resumo:
In this paper, mixed spectral-structural kernel machines are proposed for the classification of very-high resolution images. The simultaneous use of multispectral and structural features (computed using morphological filters) allows a significant increase in classification accuracy of remote sensing images. Subsequently, weighted summation kernel support vector machines are proposed and applied in order to take into account the multiscale nature of the scene considered. Such classifiers use the Mercer property of kernel matrices to compute a new kernel matrix accounting simultaneously for two scale parameters. Tests on a Zurich QuickBird image show the relevance of the proposed method : using the mixed spectral-structural features, the classification accuracy increases of about 5%, achieving a Kappa index of 0.97. The multikernel approach proposed provide an overall accuracy of 98.90% with related Kappa index of 0.985.
Resumo:
In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.
Resumo:
European regulatory networks (ERNs) are in charge of producing and disseminating non-bindings standards, guidelines and recommendations in a number of important domains, such as banking and finance, electricity and gas, telecommunications, and competition regulation. The goal of these soft rules is to promote 'best practices', achieve co-ordination among regulatory authorities and ensure the consistent application of harmonized pro-competition rules across Europe. This contribution examines the domestic adoption of the soft rules developed within the four main ERNs. Different factors are expected to influence the process of domestic adoption: the resources of regulators; the existence of a review panel; and the interdependence of the issues at stake. The empirical analysis supports hypotheses about the relevance of network-level factors: monitoring and public reporting procedures increase the final level of adoption, while soft rules concerning highly interdependent policy areas are adopted earlier.
Resumo:
Mature T-cell and T/NK-cell neoplasms are both uncommon and heterogeneous, among the broad category of non-Hodgkin's lymphomas. Due to the lack of specific genetic alterations in the vast majority of cases, most currently defined entities show overlapping morphologic and immunophenotypic features and therefore pose a challenge to the diagnostic pathologist. The goal of the symposium is to address current criteria for the recognition of specific subtypes of T-cell lymphoma, and to highlight new data regarding emerging immunophenotypic or molecular markers. This activity has been designed to meet the needs of practicing pathologists, and residents and fellows enrolled in training programs in anatomic and clinical pathology. It should be a particular benefit to those with an interest in hematopathology. Upon completion of this activity, participants should be better able to: -To be able to state the basis for the classification of mature T-cell malignancies involving nodal and extranodal sites. -To recognize and accurately diagnose the various subtypes of nodal and extranodal peripheral T-cell lymphomas. -To utilize immunohistochemical and molecular tests to characterize atypical T-cell proliferations. -To recognize and accurately diagnose T-cell lymphoproliferative lesions involving the skin and gastrointestinal tract, and be able to provide guidance regarding their clinical aggressiveness and management -To be able to utilize flow cytometric data to identify diverse functional T-cell subsets.
Resumo:
The objective of this work was to develop and validate a set of clinical criteria for the classification of patients affected by periodic fevers. Patients with inherited periodic fevers (familial Mediterranean fever (FMF); mevalonate kinase deficiency (MKD); tumour necrosis factor receptor-associated periodic fever syndrome (TRAPS); cryopyrin-associated periodic syndromes (CAPS)) enrolled in the Eurofever Registry up until March 2013 were evaluated. Patients with periodic fever, aphthosis, pharyngitis and adenitis (PFAPA) syndrome were used as negative controls. For each genetic disease, patients were considered to be 'gold standard' on the basis of the presence of a confirmatory genetic analysis. Clinical criteria were formulated on the basis of univariate and multivariate analysis in an initial group of patients (training set) and validated in an independent set of patients (validation set). A total of 1215 consecutive patients with periodic fevers were identified, and 518 gold standard patients (291 FMF, 74 MKD, 86 TRAPS, 67 CAPS) and 199 patients with PFAPA as disease controls were evaluated. The univariate and multivariate analyses identified a number of clinical variables that correlated independently with each disease, and four provisional classification scores were created. Cut-off values of the classification scores were chosen using receiver operating characteristic curve analysis as those giving the highest sensitivity and specificity. The classification scores were then tested in an independent set of patients (validation set) with an area under the curve of 0.98 for FMF, 0.95 for TRAPS, 0.96 for MKD, and 0.99 for CAPS. In conclusion, evidence-based provisional clinical criteria with high sensitivity and specificity for the clinical classification of patients with inherited periodic fevers have been developed.