163 resultados para Cellular adhesion and migration
Resumo:
The elucidation of mechanisms underlying telencephalic neural development has been limited by the lack of knowledge regarding the molecular and cellular aspects of the ganglionic eminence (GE), an embryonic structure that supplies the brain with diverse sets of GABAergic neurons. Here, we report a comprehensive transcriptomic analysis of this structure including its medial (MGE), lateral (LGE) and caudal (CGE) subdivisions and its temporal dynamics in 12.5 to 16 day-old rat embryos. Surprisingly, comparison across subdivisions showed that CGE gene expression was the most unique providing unbiased genetic evidence for its differentiation from MGE and LGE. The molecular signature of the CGE comprised a large set of genes, including Rwdd3, Cyp26b1, Nr2f2, Egr3, Cpta1, Slit3, and Hod, of which several encode cell signaling and migration molecules such as WNT5A, DOCK9, VSNL1 and PRG1. Temporal analysis of the MGE revealed differential expression of unique sets of cell specification and migration genes, with early expression of Hes1, Lhx2, Ctgf and Mdk, and late enrichment of Olfm3, SerpinE2 and Wdr44. These GE profiles reveal new candidate regulators of spatiotemporally governed GABAergic neuronogenesis.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are fatty acid-activated transcription factors belonging to the nuclear hormone receptor family. While PPARs are best known as regulators of energy homeostasis, evidence also has accumulated recently for their involvement in basic cellular functions. We review novel insights into PPAR functions in skin wound healing and liver, with emphasis on PPARβ/δ and PPARα, respectively. Activation of PPARβ/δ expression in response to injury promotes keratinocyte survival, directional sensing, and migration over the wound bed. In addition, interleukin (IL)-1 produced by the keratinocytes activates PPARβ/δ expression in the underlying fibroblasts, which hinders the mitotic activity of keratinocytes via inhibition of IL-1 signaling. Initially, roles were identified for PPARα in fatty acid catabolism. However, PPARα is also involved in downregulating many genes in female mammals. We have elucidated the mechanism of this repression, which requires sumoylation of PPARα. Physiologically, this control confers protection against estrogen-induced intrahepatic cholestasis.
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.
Resumo:
Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.
Resumo:
PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.
Resumo:
Centrifuge is a user-friendly system to simultaneously access Arabidopsis gene annotations and intra- and inter-organism sequence comparison data. The tool allows rapid retrieval of user-selected data for each annotated Arabidopsis gene providing, in any combination, data on the following features: predicted protein properties such as mass, pI, cellular location and transmembrane domains; SWISS-PROT annotations; Interpro domains; Gene Ontology records; verified transcription; BLAST matches to the proteomes of A.thaliana, Oryza sativa (rice), Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens. The tool lends itself particularly well to the rapid analysis of contigs or of tens or hundreds of genes identified by high-throughput gene expression experiments. In these cases, a summary table of principal predicted protein features for all genes is given followed by more detailed reports for each individual gene. Centrifuge can also be used for single gene analysis or in a word search mode. AVAILABILITY: http://centrifuge.unil.ch/ CONTACT: edward.farmer@unil.ch.
Resumo:
Aggressive primary tumors express transcriptional signatures that correlate with their metastatic propensity. A number of these signatures have been deployed in the clinic as risk stratification tools. However, the molecular basis of these clinically useful prognostic signatures has remained a largely unresolved area of controversy. We recently found that many prognostic signatures reflect the activity of the MYC oncogene, which in turn regulates tumor metastasis through specific effects on cancer cell invasion and migration. These findings offer a general framework for understanding the molecular basis of clinically prognostic transcriptional signatures and suggest potentially new avenues for studying metastasis.
Resumo:
Infections by opportunistic fungi have traditionally been viewed as the gross result of a pathogenic automatism, which makes a weakened host more vulnerable to microbial insults. However, fungal sensing of a host's immune environment might render this process more elaborate than previously appreciated. Here we show that interleukin (IL)-17A binds fungal cells, thus tackling both sides of the host-pathogen interaction in experimental settings of host colonization and/or chronic infection. Global transcriptional profiling reveals that IL-17A induces artificial nutrient starvation conditions in Candida albicans, resulting in a downregulation of the target of rapamycin signalling pathway and in an increase in autophagic responses and intracellular cAMP. The augmented adhesion and filamentous growth, also observed with Aspergillus fumigatus, eventually translates into enhanced biofilm formation and resistance to local antifungal defenses. This might exemplify a mechanism whereby fungi have evolved a means of sensing host immunity to ensure their own persistence in an immunologically dynamic environment.
Resumo:
OBJECTIVES: We investigated the influence of angiotensin receptor blockade and angiotensin-converting enzyme inhibition on stress-induced platelet activation in hypertensive patients. Secondary aims were effects on inflammation, coagulation, and endothelial function. METHODS: Following a 4-week placebo period, 25 hypertensive patients entered a double-blind, crossover study comparing enalapril (20 mg once daily) and losartan (100 mg once daily) treatment (each for 8 weeks). Patients were studied at rest and after a standardized exercise test. RESULTS: Mean arterial pressure was reduced from 119 ± 2 to 104 ± 2 (enalapril) and 106 ± 2 (losartan) mmHg (both P <0.001). Plasma angiotensin II decreased from 2.4 ± 0.4 to 0.5 ± 0.1 pmol/l with enalapril, and increased to 7.2 ± 1.3 pmol/l with losartan (both P <0.001). Exercise-evoked platelet activation, as evidenced by increased numbers of P-selectin-positive platelets (P <0.01), elevated circulating platelet-platelet aggregates (P <0.01) and soluble P-selectin levels (P <0.001), and increased platelet responsiveness to adenosine diphosphate and thrombin (both P <0.05). Neither drug influenced these markers of platelet activation at rest or following exercise. Markers of inflammation (high-sensitivity C reactive protein, interleukin-6, tissue necrosis factor-α), coagulation (tissue plasminogen activator antigen, prothrombin fragment F1+2), and endothelial function (von Willebrand factor, soluble vascular cellular adhesion molecule-1, and intercellular adhesion molecule-1) were also uninfluenced by treatment. CONCLUSION: Enalapril and losartan failed to reduce platelet activity both at rest and during exercise in hypertensive patients. Markers of inflammation, coagulation, and endothelial function were similarly unaffected. Inhibition of the renin-angiotensin system promotes its beneficial effects in hypertension through mechanisms other than platelet inhibition.
Resumo:
Rare earth elements (REE), while not essential for the physiologic functions of animals, are ingested and incorporated in ppb concentrations in bones and teeth. Nd isotope compositions of modern bones of animals from isotopically distinct habitats demonstrate that the (143)Nd/(144)Nd of the apatite can be used as a fingerprint for bedrock geology or ambient water mass. This potentially allows the provenance and migration of extant vertebrates to be traced, similar to the use of Sr isotopes. Although REE may be enriched by up to 5 orders of magnitude during diagenesis and recrystallization of bone apatite, in vivo (143)Nd/(144)Nd may be preserved in the inner cortex of fossil bones or enamel. However, tracking the provenance of ancient or extinct vertebrates is possible only for well-preserved archeological and paleontological skeletal remains with in vivo-like Nd contents at the ppb-level. Intra-bone and -tooth REE analysis can be used to screen for appropriate areas. Large intra-bone Nd concentration gradients of 10(1)-10(3) are often measured. Nd concentrations in the inner bone cortex increase over timescales of millions of years, while bone rims may be enriched over millenial timescales. Nevertheless, epsilon(Nd) values are often similar within one epsilon(Nd) unit within a single bone. Larger intra-bone differences in specimens may either reflect a partial preservation of in vivo values or changing epsilon(Nd) values of the diagenetic fluid during fossilization. However, most fossil specimens and the outer rims of bones will record taphonomic (143)Nd/(144)Nd incorporated post mortem during diagenesis. Unlike REE patterns, (143)Nd/(144)Nd are not biased by fractionation processes during REE-uptake into the apatite crystal lattice, hence the epsilon(Nd) value is an important tracer for taphonomy and reworking. Bones and teeth from autochthonous fossil assemblages have small variations of +/- 1 epsilon(Nd) unit only. In contrast, fossil bones and teeth from over 20 different marine and terrestrial fossil sites have a total range of epsilon(Nd) values from -13.0 to 4.9 (n = 80), often matching the composition of the embedding sediment. This implies that the surrounding sediment is the source of Nd in the fossil bones and that the specimens of this study seem not to have been reworked. Differences in epsilon(Nd) values between skeletal remains and embedding sediment may either indicate reworking of fossils and/or a REE-uptake from a diagenetic fluid with non-sediment derived epsilon(Nd) values. The latter often applies to fossil shark teeth, which may preserve paleo-seawater values. Complementary to epsilon(Nd) values, (87)Sr/(86)Sr can help to further constrain the fossil provenance and reworking. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The epithelial Na(+) channel (ENaC) and the acid-sensing ion channels (ASICs) form subfamilies within the ENaC/degenerin family of Na(+) channels. ENaC mediates transepithelial Na(+) transport, thereby contributing to Na(+) homeostasis and the maintenance of blood pressure and the airway surface liquid level. ASICs are H(+)-activated channels found in central and peripheral neurons, where their activation induces neuronal depolarization. ASICs are involved in pain sensation, the expression of fear, and neurodegeneration after ischemia, making them potentially interesting drug targets. This review summarizes the biophysical properties, cellular functions, and physiologic and pathologic roles of the ASIC and ENaC subfamilies. The analysis of the homologies between ENaC and ASICs and the relation between functional and structural information shows many parallels between these channels, suggesting that some mechanisms that control channel activity are shared between ASICs and ENaC. The available crystal structures and the discovery of animal toxins acting on ASICs provide a unique opportunity to address the molecular mechanisms of ENaC and ASIC function to identify novel strategies for the modulation of these channels by pharmacologic ligands.
Resumo:
The subcellular localization and function of variant subtelomeric multigene families in Plasmodium vivax remain vastly unknown. Among them, the vir superfamily is putatively involved in antigenic variation and in mediating adherence to endothelial receptors. In the absence of a continuous in vitro culture system for P. vivax, we have generated P. falciparum transgenic lines expressing VIR proteins to infer location and function. We chose three proteins pertaining to subfamilies A (VIR17), C (VIR14) and D (VIR10), with domains and secondary structures that predictably traffic these proteins to different subcellular compartments. Here, we showed that VIR17 remained inside the parasite and around merozoites, whereas VIR14 and VIR10 were exported to the membrane of infected red blood cells (iRBCs) in an apparent independent pathway of Maurer's clefts. Remarkably, VIR14 was exposed at the surface of iRBCs and mediated adherence to different endothelial receptors expressed in CHO cells under static conditions. Under physiological flow conditions, however, cytoadherence was only observed to ICAM-1, which was the only receptor whose adherence was specifically and significantly inhibited by antibodies against conserved motifs of VIR proteins. Immunofluorescence studies using these antibodies also showed different subcellular localizations of VIR proteins in P. vivax-infected reticulocytes from natural infections. These data suggest that VIR proteins are trafficked to different cellular compartments and functionally demonstrates that VIR proteins can specifically mediate cytoadherence to the ICAM-1 endothelial receptor.
Resumo:
Three pyrenyl-arene ruthenium complexes (M(1)-M(3)) of the general formula [Ru(η(6)-arene-pyrenyl)Cl(2)(pta)] (pta = 1,3,5-triaza-7-phosphaadamantane) have been synthesised and characterised. Prior to the coordination to ruthenium, pyrene was connected to the arene ligand via an alkane chain containing different functional groups: ester (L(1)), ether (L(2)) and amide (L(3)), respectively. Furthermore, the pyrenyl moieties of the M(n) complexes were encapsulated within the hydrophobic cavity of the water soluble metalla-cage, [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) (tpt = 2,4,6-tri-(pyridin-4-yl)-1,3,5-triazine; donq = 5,8-dioxydo-1,4-naphthoquinonato), while the arene ruthenium end was pointing out of the cage, thus giving rise to the corresponding host-guest systems [M(n)⊂Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+) ([M(n)⊂cage](6+)). The antitumor activity of the pyrenyl-arene ruthenium complexes (M(n)) and the corresponding host-guest systems [M(n)⊂cage][CF(3)SO(3)](6) were evaluated in vitro in different types of human cancer cell lines (A549, A2780, A2780cisR, Me300 and HeLa). Complex M(2), which contains an ether group within the alkane chain, demonstrated at least a 10 times higher cytotoxicity than the reference compound [Ru(η(6)-p-cymene)Cl(2)(pta)] (RAPTA-C). All host-guest systems [M(n)⊂cage](6+) showed good anticancer activity with IC(50) values ranging from 2 to 8 μM after 72 h exposure. The fluorescence of the pyrenyl moiety allowed the monitoring of the cellular uptake and revealed an increase of uptake by a factor two of the M(2) complex when encapsulated in the metalla-cage [Ru(6)(η(6)-p-cymene)(6)(tpt)(2)(donq)(3)](6+).
Resumo:
With the aim of improving human health, scientists have been using an approach referred to as translational research, in which they aim to convey their laboratory discoveries into clinical applications to help prevent and cure disease. Such discoveries often arise from cellular, molecular, and physiological studies that progress to the clinical level. Most of the translational work is done using animal models that share common genes, molecular pathways, or phenotypes with humans. In this article, we discuss how translational work is carried out in various animal models and illustrate its relevance for human sleep research and sleep-related disorders.