160 resultados para Biological laboratories.
Resumo:
It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.
Resumo:
Recent ink dating methods focused mainly on changes in solvent amounts occurring over time. A promising method was developed at the Landeskriminalamt of Munich using thermal desorption (TD) followed by gas chromatography / mass spectrometry (GC/MS) analysis. Sequential extractions of the phenoxyethanol present in ballpoint pen ink entries were carried out at two different temperatures. This method is applied in forensic practice and is currently implemented in several laboratories participating to the InCID group (International Collaboration on Ink Dating). However, harmonization of the method between the laboratories proved to be a particularly sensitive and time consuming task. The main aim of this work was therefore to implement the TD-GC/MS method at the Bundeskriminalamt (Wiesbaden, Germany) in order to evaluate if results were comparable to those obtained in Munich. At first validation criteria such as limits of reliable measurements, linearity and repeatability were determined. Samples were prepared in three different laboratories using the same inks and analyzed using two TDS-GC/MS instruments (one in Munich and one in Wiesbaden). The inter- and intra-laboratory variability of the ageing parameter was determined and ageing curves were compared. While inks stored in similar conditions yielded comparable ageing curves, it was observed that significantly different storage conditions had an influence on the resulting ageing curves. Finally, interpretation models, such as thresholds and trend tests, were evaluated and discussed in view of the obtained results. Trend tests were considered more suitable than threshold models. As both approaches showed limitations, an alternative model, based on the slopes of the ageing curves, was also proposed.
Resumo:
24S- and 27-hydroxycholesterol are obligatory intermediates of cholesterol catabolism and play an important role in the maintenance of whole-body cholesterol homeostasis. Using an HPLC-MS method for oxysterol quantification, the distribution of esterified and unesterified oxysterols in lipoprotein subfractions as well as the influence of daytime, food intake and menstrual cycle on oxysterol concentrations were investigated in healthy volunteers. Moreover, reference intervals for 24S- and 27-hydroxycholesterol in plasma as well as the corresponding levels for 27-hydroxycholesterol in the HDL subfraction were established in 100 healthy volunteers. Both circulating oxysterols are mainly transported in association with HDL and LDL--primarily in the esterified form. No significant diurnal changes and no variations during menstrual cycle of either absolute or cholesterol-related plasma levels were detected. In contrast to 24S-hydroxycholesterol in plasma and 27-hydroxycholesterol in the HDL subfraction, the 95% reference intervals of 27-hydroxycholesterol both in plasma and the non-HDL subfraction were higher in males than in females. The concentrations of 27-hydroxycholesterol in plasma and the non-HDL subfraction showed strong positive correlations with the concentrations of cholesterol, non-HDL cholesterol and triglycerides. Our data on the lipoprotein distribution of oxysterols as well as on their intra- and inter-individual variation set the stage for future clinical studies.
Resumo:
As culture-based methods for the diagnosis of invasive fungal diseases (IFD) in leukemia and hematopoietic SCT patients have limited performance, non-culture methods are increasingly being used. The third European Conference on Infections in Leukemia (ECIL-3) meeting aimed at establishing evidence-based recommendations for the use of biological tests in adult patients, based on the grading system of the Infectious Diseases Society of America. The following biomarkers were investigated as screening tests: galactomannan (GM) for invasive aspergillosis (IA); β-glucan (BG) for invasive candidiasis (IC) and IA; Cryptococcus Ag for cryptococcosis; mannan (Mn) Ag/anti-mannan (A-Mn) Ab for IC, and PCR for IA. Testing for GM, Cryptococcus Ag and BG are included in the revised EORTC/MSG (European Organization for Research and Treatment of Cancer/Mycoses Study Group) consensus definitions for IFD. Strong evidence supports the use of GM in serum (A II), and Cryptococcus Ag in serum and cerebrospinal fluid (CSF) (A II). Evidence is moderate for BG detection in serum (B II), and the combined Mn/A-Mn testing in serum for hepatosplenic candidiasis (B III) and candidemia (C II). No recommendations were formulated for the use of PCR owing to a lack of standardization and clinical validation. Clinical utility of these markers for the early management of IFD should be further assessed in prospective randomized interventional studies.
Resumo:
Malaria, a disease of worldwide significance, is responsible for over one million deaths annually. The liver-stage of Plasmodium's life cycle is the first, obligatory, but clinically silent step in malaria infection. The P. falciparum type II fatty acid biosynthesis pathway (PfFAS-II) has been found to be essential for complete liver-stage development and has been regarded as a potential antimalarial target for the development of drugs for malaria prophylaxis and liver-stage eradication. In this paper, new coumarin-based triclosan analogues are reported and their biological profile is explored in terms of inhibitory potency against enzymes of the PfFAS-II pathway. Among the tested compounds, 7 and 8 showed the highest inhibitory potency against Pf enoyl-ACP-reductase (PfFabI), followed by 15 and 3. Finally, we determined the crystal structures of compounds 7 and 11 in complex with PfFabI to identify their mode of binding and to confirm outcomes of docking simulations.
Resumo:
In the last two decades, the third-dimension has become a focus of attention in electron microscopy to better understand the interactions within subcellular compartments. Initially, transmission electron tomography (TEM tomography) was introduced to image the cell volume in semi-thin sections (∼500nm). With the introduction of the focused ion beam scanning electron microscope, a new tool, FIB-SEM tomography, became available to image much larger volumes. During TEM tomography and FIB-SEM tomography, the resin section is exposed to a high electron/ion dose such that the stability of the resin embedded biological sample becomes an important issue. The shrinkage of a resin section in each dimension, especially in depth, is a well-known phenomenon. To ensure the dimensional integrity of the final volume of the cell, it is important to assess the properties of the different resins and determine the formulation which has the best stability in the electron/ion beam. Here, eight different resin formulations were examined. The effects of radiation damage were evaluated after different times of TEM irradiation. To get additional information on mass-loss and the physical properties of the resins (stiffness and adhesion), the topography of the irradiated areas was analysed with atomic force microscopy (AFM). Further, the behaviour of the resins was analysed after ion milling of the surface of the sample with different ion currents. In conclusion, two resin formulations, Hard Plus and the mixture of Durcupan/Epon, emerged that were considerably less affected and reasonably stable in the electron/ion beam and thus suitable for the 3-D investigation of biological samples.
Resumo:
Background: Urine is still the matrix of choice to fight against doping, because it can be collected non-invasively during anti-doping tests. Most of the World Anti-Doping Agency's accredited laboratories have more than 20 years experience in analyzing this biological fluid and the majority of the compounds listed in the 2010 Prohibited List - International Standard are eliminated through the urinary apparatus. Storing and transporting urine samples for doping analyses does not include a specific protocol to prevent microbial and thermal degradation. The use of a rapid and reliable screening method could enable determine reference intervals for urine specimens in doping control samples and evaluate notably the prevalence of microbial contamination known to be responsible for the degradation of chemical substances in urine.Methods: The Sysmex(R) UF-500i is a recent urine flow cytometer analyzer capable of quantifying BACT and other urinary particles such as RBC, WBC, EC, DEBRIS, CAST, PATH. CAST, YLC, SRC as well as measuring urine conductivity. To determine urine anti-doping reference intervals, 501 samples received in our laboratory over a period of two months were submitted to an immediate examination. All samples were collected and then transported at room temperature. Analysis of variance was performed to test the effects of factors such as gender, test type [in-competition, out-of-competition] and delivery time.Results: The data obtained showed that most of the urine samples were highly contaminated with bacteria. The other urine particles were also very different according to the factors.Conclusions: The Sysmex(R) UF-500i was capable of providing a snapshot of urine particles present in the samples at the time of the delivery to the laboratory. These particles, BACT in particular, gave a good idea of the possible microbial degradation which had and/or could have occurred in the sample. This information could be used as the first quality control set up in WADA (World Anti-Doping Agency) accredited laboratories to determine if steroid profiles, endogenous and prohibited substances have possibly been altered. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
OBJECTIVES Guidelines proposed bioprosthesis implantation for aortic valve disease if the patients were at least 65 years old at the time of surgery, with a trend towards even younger patients in recent years. Considering the adverse effects of lifetime anticoagulation, new biological valves (less prone to degeneration) and new technologies may lead patients and surgeons to different choices. Therefore, it is interesting to analyse the results of aortic bioprosthetic valve replacement in patients aged <65 years at the time of surgery. METHODS From January 2000 to December 2010, 84 patients aged <65 years at the time of surgery had undergone an aortic bio-prosthetic valve replacement. A mid-term follow-up [(FU) mean FU time: 54.4 ± 39.2 months] was done in August 2011 in all patients (FU completeness: 100%). Results were compared with patients who had a mechanical prosthetic aortic valve replacement during the same period. RESULTS The reoperation rate for structural valve degeneration (SVD) of bioprostheses was 6% and occurred exclusively among patients <56 years. Contraindications for anticoagulation determined the choice of a bioprosthesis among 83% of these patients. The personal preference to avoid anticoagulation was the leading cause in 68% of the older patients (56-65 years). Neurological complications occurred more frequently in the mechanical control group. CONCLUSIONS Reoperations for SVD after bioprosthesis implantation occurred exclusively among younger patients (<56 years), not suitable for systemic anticoagulation. Previous studies, together with our experience, are in favour of an age limit between 56 and 60 years, taking into consideration alternative transcatheter approaches to SVD treatment.
Resumo:
We present a viscometric affinity biosensor that can potentially allow continuous multi-analyte monitoring in biological fluids like blood or plasma. The sensing principle is based on the detection of viscosity changes of a polymeric solution which has a selective affinity for the analyte of interest. The chemico-mechanical sensor incorporates an actuating piezoelectric diaphragm, a sensing piezoelectric diaphragm and a flow-resisting microchannel for viscosity detection. A free-standing Anodic Alumina Oxide (AAO) porous nano-membrane is used as selective interface. A glucose-sensitive sensor was fabricated and extensively assessed in buffer solution. The sensor reversibility, stability and sensitivity were excellent during at least 65 hours. Results showed also a good degree of stability for a long term measurement (25 days). The sensor behaviour was furthermore tested in fetal bovine serum (FBS). The obtained results for glucose sensing are very promising, indicating that the developed sensor is a candidate for continuous monitoring in biological fluids. Sensitive solutions for ionized calcium and pH are currently under development and should allow multi-analyte sensing in the near future.
Resumo:
Integration of biological data of various types and the development of adapted bioinformatics tools represent critical objectives to enable research at the systems level. The European Network of Excellence ENFIN is engaged in developing an adapted infrastructure to connect databases, and platforms to enable both the generation of new bioinformatics tools and the experimental validation of computational predictions. With the aim of bridging the gap existing between standard wet laboratories and bioinformatics, the ENFIN Network runs integrative research projects to bring the latest computational techniques to bear directly on questions dedicated to systems biology in the wet laboratory environment. The Network maintains internally close collaboration between experimental and computational research, enabling a permanent cycling of experimental validation and improvement of computational prediction methods. The computational work includes the development of a database infrastructure (EnCORE), bioinformatics analysis methods and a novel platform for protein function analysis FuncNet.