313 resultados para Autophagic Cell Death


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fabry disease is a lysosomal storage disorder (LSD) caused by a deficiency in alpha-galactosidase A. The disease is characterized by severe major organ involvement, but the pathologic mechanisms responsible have not been elucidated. Disruptions of autophagic processes have been reported for other LSDs, but have not yet been investigated in Fabry disease. Renal biopsies were obtained from five adult male Fabry disease patients before and after three years of enzyme replacement therapy (ERT) with agalsidase alfa. Vacuole accumulation was seen in renal biopsies from all patients compared with control biopsies. Decreases in the number of vacuoles were seen after three years of ERT primarily in renal endothelial cells and mesangial cells. Measurement of the levels of LC3, a specific autophagy marker, in cultured cells from Fabry patients revealed increased basal levels compared to cells from non-Fabry subjects and a larger increase in response to starvation than seen in non-Fabry cells. Starvation in the presence of protease inhibitors did not result in a significant increase in LC3 in Fabry cells, whereas a further increase in LC3 was observed in non-Fabry cells, an observation that is consistent with impaired autophagic flux in Fabry disease. Overexpression of LC3 mRNA in Fabry fibroblasts compared to control cells is consistent with an upregulation of autophagy. Furthermore, LC3 and p62/SQSTM1 (that binds to LC3) staining in renal tissues and in cultured fibroblasts from Fabry patients supports impairment of autophagic flux. These findings suggest that Fabry disease is linked to a deregulation of autophagy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The isolation of subsets of Ag-specific T cells for in vitro and in vivo studies by FACS is compromised by the fact that the soluble MHC-peptide complexes and Abs used for staining, especially when combined, induce unwanted T cell activation and eventually apoptosis. This is especially a problem for CD8+ CTL, which are susceptible to activation-dependent cell death. In this study, we show that reversible MHC-peptide complexes (tetramers) can be prepared by conjugating MHC-peptide monomers with desthiobiotin (DTB; also called dethiobiotin) and multimerization by reaction with fluorescent streptavidin. While in the cold these reagents are stable and allow good staining, they rapidly dissociate in monomers at elevated temperatures, especially in the presence of free biotin. FACS cloning of Melan-A (MART-1)-specific CTL from a melanoma-infiltrated lymph node with reversible HLA-A2 Melan-A26-35 multimers yielded over two times more clones than when using the conventional biotin-containing multimers. CTL clones obtained by means of reversible multimers killed Melan-A-positive tumor cells more efficiently as compared with clones obtained with the stable multimers. Among the CTL obtained with the reversible multimers, but much less among those obtained with the stable multimers, a high proportion of clones exhibited high functional and physical avidity and died upon incubation with soluble MHC-peptide complexes. Finally, we show that Fab' of an anti-CD8 Ab can be converted in reversible DTB streptavidin conjugates the same way. These DTB reagents efficiently and reversibly stained murine and human CTL without affecting their viability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The role of autophagy and its relationship with apoptosis in Alzheimer disease (AD) pathogenesis is poorly understood. Disruption of autophagy leads to buildup of incompletely digested substrates, amyloid-β (Aβ) peptide accumulation in vacuoles and cell death. Aβ, in turn, has been found to affect autophagy. Thus, Aβ might be part of a loop in which it is both the substrate of altered autophagy and its cause. Given the relevance of different soluble forms of Aβ1-42 in AD, we have investigated whether monomers and oligomers of the peptide have a differential role in causing altered autophagy and cell death. Using differentiated SK-N-BE neuroblastoma cells, we found that monomers hamper the formation of the autophagic BCL2-BECN1/Beclin 1 complex and activate the MAPK8/JNK1-MAPK9/JNK2 pathway phosphorylating BCL2. Monomers also inhibit apoptosis and allow autophagy with intracellular accumulation of autophagosomes and elevation of levels of BECN1 and LC3-II, resulting in an inhibition of substrate degradation due to an inhibitory action on lysosomal activity. Oligomers, in turn, favor the formation of the BCL2-BECN1 complex favoring apoptosis. In addition, they cause a less profound increase in BECN1 and LC3-II levels than monomers without affecting the autophagic flux. Thus, data presented in this work show a link for autophagy and apoptosis with monomers and oligomers, respectively. These studies are likely to help the design of novel disease modifying therapies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Myeloid cell leukemia-1 (MCL1) is an anti-apoptotic member of the BCL2 family that is deregulated in various solid and hematological malignancies. However, its role in the molecular pathogenesis of diffuse large B-cell lymphoma (DLBCL) is unclear. We analyzed gene expression profiling data from 350 DLBCL patient samples and detected that activated B-cell-like (ABC) DLBCLs express MCL1 at significantly higher levels compared with germinal center B-cell-like DLBCL patient samples (P=2.7 × 10(-10)). Immunohistochemistry confirmed high MCL1 protein expression predominantly in ABC DLBCL in an independent patient cohort (n=249; P=0.001). To elucidate molecular mechanisms leading to aberrant MCL1 expression, we analyzed array comparative genomic hybridization data of 203 DLBCL samples and identified recurrent chromosomal gains/amplifications of the MCL1 locus that occurred in 26% of ABC DLBCLs. In addition, aberrant STAT3 signaling contributed to high MCL1 expression in this subtype. Knockdown of MCL1 as well as treatment with the BH3-mimetic obatoclax induced apoptotic cell death in MCL1-positive DLBCL cell lines. In summary, MCL1 is deregulated in a significant fraction of ABC DLBCLs and contributes to therapy resistance. These data suggest that specific inhibition of MCL1 might be utilized therapeutically in a subset of DLBCLs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Visual areas 17 and 18 were studied with morphometric methods for numbers of neurons, glia, senile plaques (SP), and neurofibrillary tangles (NFT) in 13 cases of Alzheimer's disease (AD) as compared to 11 controls. In AD cases, the mean neuronal density was significantly decreased by about 30% in both areas 17 and 18, while the glial density was increased significantly only in area 17. The volume of area 17 was unchanged in AD cases but its total number of neurons was decreased by 33% and its total number of glia increased by 45% compared to controls. In AD the number of SP was similar in areas 17 and 18, while that of NFT was significantly higher in area 18. The number of neurons with NFT was only 2% in area 17 and about 10% in area 18. The discrepancy between the loss of neurons and the amount of NFT suggests that neuronal loss can occur without passing through NFT degeneration. The deposition of SP was correlated with glial proliferation, but not with neuronal loss or neurofibrillary degeneration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Under various stresses, mutation-sensitised proteins may spontaneously convert into inactive, aggregation-prone structures, which may be cytotoxic and infectious. In the cell, this new kind of "molecular criminality" is actively fought against by a network of molecular chaperones that can specifically identify, isolate and unfold damaged (delinquent) proteins and favour their subsequent native refolding. Irreversibly damaged molecules unable to natively refold are preferentially "executed" and recycled by proteases. Failing that, they are "imprisoned" within compact amyloids, or "evicted" from the cell. Thus, striking parallels, although of questionable ethical value, exist between protein and human criminality, and between the cellular and social responses to these different types of criminality. Fundamental differences also exist. Whereas programmed death (apoptosis) is the preferred solution chosen by aged and aggregation-stressed cells, collective suicide is seldom an option chosen by lawless human societies. More significantly, there is no clear cellular equivalent for the role of the family and the education system, which are so essential to the proper shaping of functional individuals in the society, and give rise to humanism, that favours crime prevention, reeducation and reinsertion programs over capital punishment. To the cardiologist and transplantation surgeon, the interest of molecular chaperones, in particular of Hsp70, Hsp90 and Hsp27, lays in their ability to inhibit the signalling pathway of programmed cell death. Their induction before and during ischemia, by various treatments and drugs could significantly reduce damages from the post ischemic reperfusion of organs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) is a pro-inflammatory cytokine exerting pleiotropic effects on endothelial cells. Depending on the vascular context it can induce endothelial cell activation and survival or death. The microenvironmental cues determining whether endothelial cells will survive or die, however, have remained elusive. Here we report that integrin ligation acts permissive for TNF-induced protein kinase B (PKB/Akt) but not nuclear factor (NF)-kappaB activation. Concomitant activation of PKB/Akt and NF-kappaB is essential for the survival of endothelial cells exposed to TNF. Active PKB/Akt strengthens integrin-dependent endothelial cell adhesion, whereas disruption of actin stress fibers abolishes the protective effect of PKB/Akt. Integrin-mediated adhesion also represses TNF-induced JNK activation, but JNK activity is not required for cell death. The alphaVbeta3/alphaVbeta5 integrin inhibitor EMD121974 sensitizes endothelial cells to TNF-dependent cytotoxicity and active PKB/Akt attenuates this effect. Interferon gamma synergistically enhanced TNF-induced endothelial cell death in all conditions tested. Taken together, these observations reveal a novel permissive role for integrins in TNF-induced PKB/Akt activation and prevention of TNF-induced death distinct of NF-kappaB, and implicate the actin cytoskeleton in PKB/Akt-mediated cell survival. The sensitizing effect of EMD121974 on TNF cytotoxicity may open new perspectives to the therapeutic use of TNF as anticancer agent.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The majority of HIV-infected individuals fail to produce protective antibodies and have diminished responses to new immunizations. We report here that even though there is an expansion of follicular helper T (TFH) cells in HIV-infected individuals, the cells are unable to provide adequate B cell help. We found a higher frequency of programmed cell death ligand 1 (PD-L1)(+) germinal center B cells from lymph nodes of HIV-infected individuals suggesting a potential role for PD-1-PD-L1 interaction in regulating TFH cell function. In fact, we show that engagement of PD-1 on TFH cells leads to a reduction in cell proliferation, activation, inducible T-cell co-stimulator (ICOS) expression and interleukin-21 (IL-21) cytokine secretion. Blocking PD-1 signaling enhances HIV-specific immunoglobulin production in vitro. We further show that at least part of this defect involves IL-21, as addition of this cytokine rescues antibody responses and plasma cell generation in vitro. Our results suggest that deregulation of TFH cell-mediated B cell help diminishes B cell responses during HIV infection and may be related to PD-1 triggering on TFH cells. These results demonstrate a role for TFH cell impairment in HIV pathogenesis and suggest that enhancing their function could have a major impact on the outcome and control of HIV infection, preventing future infections and improving immune responses to vaccinations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chronic viral infections and malignant tumours induce T cells that have a reduced ability to secrete effector cytokines and have upregulated expression of the inhibitory receptor PD1 (programmed cell death protein 1). These features have so far been considered to mark terminally differentiated 'exhausted' T cells. However, several recent clinical and experimental observations indicate that phenotypically exhausted T cells can still mediate a crucial level of pathogen or tumour control. In this Opinion article, we propose that the exhausted phenotype results from a differentiation process in which T cells stably adjust their effector capacity to the needs of chronic infection. We argue that this phenotype is optimized to cause minimal tissue damage while still mediating a critical level of pathogen control. In contrast to the presently held view of functional exhaustion, this new concept better reflects the pathophysiology and clinical manifestations of persisting infections, and it provides a rationale for emerging therapies that enhance T cell activity in chronic infection and cancer by blocking inhibitory receptors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell death due to cerebral ischemia has been attributed to necrosis and apoptosis, but autophagic mechanisms have recently been implicated as well. Using rats exposed to neonatal focal cerebral ischemia, we have shown that lysosomal and autophagic activities are increased in ischemic neurons, and have obtained strong neuroprotection by post-ischemic inhibition of autophagy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

D-JNKI1, a cell-permeable peptide inhibitor of the c-Jun N-terminal kinase (JNK) pathway, has been shown to be a powerful neuroprotective agent after focal cerebral ischemia in adult mice and young rats. We have investigated the potential neuroprotective effect of D-JNKI1 and the involvement of the JNK pathway in a neonatal rat model of cerebral hypoxia-ischemia. Seven-day-old rats underwent a permanent ligation of the right common carotid artery followed by 2h of hypoxia (8% oxygen). Treatment with D-JNKI1 (0.3mg/kg intraperitoneally) significantly reduced early calpain activation, late caspase-3 activation and, in the thalamus, autophagosome formation, indicating an involvement of JNK in different types of cell death: necrotic, apoptotic and autophagic. However the size of the lesion was unchanged. Further analysis showed that neonatal hypoxia-ischemia induced an immediate decrease in JNK phosphorylation (reflecting mainly P-JNK1) followed by a slow progressive increase (including P-JNK3 54kDa), whereas c-jun and c-fos expression were both strongly activated immediately after hypoxia-ischemia. In conclusion, unlike in adult ischemic models, JNK is only moderately activated after severe cerebral hypoxia-ischemia in neonatal rats and the observed positive effects of D-JNKI1 are insufficient to give neuroprotection. Thus, for perinatal asphyxia, D-JNKI1 can only be considered in association with other therapies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

NMDA receptors (NMDARs) mediate ischemic brain damage, for which interactions between the C termini of NR2 subunits and PDZ domain proteins within the NMDAR signaling complex (NSC) are emerging therapeutic targets. However, expression of NMDARs in a non-neuronal context, lacking many NSC components, can still induce cell death. Moreover, it is unclear whether targeting the NSC will impair NMDAR-dependent prosurvival and plasticity signaling. We show that the NMDAR can promote death signaling independently of the NR2 PDZ ligand, when expressed in non-neuronal cells lacking PSD-95 and neuronal nitric oxide synthase (nNOS), key PDZ proteins that mediate neuronal NMDAR excitotoxicity. However, in a non-neuronal context, the NMDAR promotes cell death solely via c-Jun N-terminal protein kinase (JNK), whereas NMDAR-dependent cortical neuronal death is promoted by both JNK and p38. NMDAR-dependent pro-death signaling via p38 relies on neuronal context, although death signaling by JNK, triggered by mitochondrial reactive oxygen species production, does not. NMDAR-dependent p38 activation in neurons is triggered by submembranous Ca(2+), and is disrupted by NOS inhibitors and also a peptide mimicking the NR2B PDZ ligand (TAT-NR2B9c). TAT-NR2B9c reduced excitotoxic neuronal death and p38-mediated ischemic damage, without impairing an NMDAR-dependent plasticity model or prosurvival signaling to CREB or Akt. TAT-NR2B9c did not inhibit JNK activation, and synergized with JNK inhibitors to ameliorate severe excitotoxic neuronal loss in vitro and ischemic cortical damage in vivo. Thus, NMDAR-activated signals comprise pro-death pathways with differing requirements for PDZ protein interactions. These signals are amenable to selective inhibition, while sparing synaptic plasticity and prosurvival signaling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Among cerebral creatine deficiency syndromes, guanidinoacetate methyltransferase (GAMT) deficiency can present the most severe symptoms, and is characterized by neurocognitive dysfunction due to creatine deficiency and accumulation of guanidinoacetate in the brain. So far, every patient was found with negligible GAMT activity. However, GAMT deficiency is thought under-diagnosed, in particular due to unforeseen mutations allowing sufficient residual activity avoiding creatine deficiency, but enough guanidinoacetate accumulation to be toxic. With poorly known GAA-specific neuropathological mechanisms, we developed an RNAi-induced partial GAMT deficiency in organotypic rat brain cell cultures. As expected, the 85% decrease of GAMT protein was insufficient to cause creatine deficiency, but generated guanidinoacetate accumulation causing axonal hypersprouting and decrease in natural apoptosis, followed by induction of non-apoptotic cell death. Specific guanidinoacetate-induced effects were completely prevented by creatine co-treatment. We show that guanidinoacetate accumulation without creatine deficiency is sufficient to affect CNS development, and suggest that additional partial GAMT deficiencies, which may not show the classical brain creatine deficiency, may be discovered through guanidinoacetate measurement.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Terminal differentiation of B cells depends on two interconnected survival pathways, elicited by the B-cell receptor (BCR) and the BAFF receptor (BAFF-R), respectively. Loss of either signaling pathway arrests B-cell development. Although BCR-dependent survival depends mainly on the activation of the v-AKT murine thymoma viral oncogene homolog 1 (AKT)/PI3-kinase network, BAFF/BAFF-R-mediated survival engages non-canonical NF-κB signaling as well as MAPK/extracellular-signal regulated kinase and AKT/PI3-kinase modules to allow proper B-cell development. Plasma cell survival, however, is independent of BAFF-R and regulated by APRIL that signals NF-κB activation via alternative receptors, that is, transmembrane activator and CAML interactor (TACI) or B-cell maturation (BCMA). All these complex signaling events are believed to secure survival by increased expression of anti-apoptotic B-cell lymphoma 2 (Bcl2) family proteins in developing and mature B cells. Curiously, how lack of BAFF- or APRIL-mediated signaling triggers B-cell apoptosis remains largely unexplored. Here, we show that two pro-apoptotic members of the 'Bcl2 homology domain 3-only' subgroup of the Bcl2 family, Bcl2 interacting mediator of cell death (Bim) and Bcl2 modifying factor (Bmf), mediate apoptosis in the context of TACI-Ig overexpression that effectively neutralizes BAFF as well as APRIL. Surprisingly, although Bcl2 overexpression triggers B-cell hyperplasia exceeding the one observed in Bim(-/-)Bmf(-/-) mice, Bcl2 transgenic B cells remain susceptible to the effects of TACI-Ig expression in vivo, leading to ameliorated pathology in Vav-Bcl2 transgenic mice. Together, our findings shed new light on the molecular machinery restricting B-cell survival during development, normal homeostasis and under pathological conditions. Our data further suggest that Bcl2 antagonists might improve the potency of BAFF/APRIL-depletion strategies in B-cell-driven pathologies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During different forms of neurodegenerative diseases, including the retinal degeneration, several cell cycle proteins are expressed in the dying neurons from Drosophila to human revealing that these proteins are a hallmark of neuronal degeneration. This is true for animal models of Alzheimer's, and Parkinson's diseases, Amyotrophic Lateral Sclerosis and for Retinitis Pigmentosa as well as for acute injuries such as stroke and light damage. Longitudinal investigation and loss-of-function studies attest that cell cycle proteins participate to the process of cell death although with different impacts, depending on the disease. In the retina, inhibition of cell cycle protein action can result to massive protection. Nonetheless, the dissection of the molecular mechanisms of neuronal cell death is necessary to develop adapted therapeutic tools to efficiently protect photoreceptors as well as other neuron types.