146 resultados para Aldehyde Dehydrogenase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soy and soy-based products are widely consumed by infants and adult individuals. There has been speculation that the presence of isoflavone phytoestrogens in soybean cause adverse effects on the development and function of the male reproductive system. The purpose of this study was to examine the influence of dietary soy and phytoestrogens on testicular and reproductive functions. Male mice were fed from conception to adulthood with either a high soy-containing diet or a soy-free diet. Although adult mice fed a soy-rich diet exhibited normal male behaviour and were fertile, we observed a reduced proportion of haploid germ cells in testes correlating with a 25% decrease in epididymal sperm counts and a 21% reduction in litter size. LH and androgens levels were not affected but transcripts coding for androgen-response genes in Sertoli cells and Gapd-s, a germ cell-specific gene involved in sperm glycolysis and mobility were significantly reduced. In addition, we found that dietary soy decreased the size of the seminal vesicle but without affecting its proteolytic activity. Taken together, these studies show that long-term exposure to dietary soy and phytoestrogens may affect male reproductive function resulting in a small decrease in sperm count and fertility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) occur in most grade 2 and 3 gliomas, secondary glioblastomas, and a subset of acute myelogenous leukemias but have not been detected in other tumor types. The mutations occur at specific arginine residues and result in the acquisition of a novel enzymatic activity that converts 2-oxoglutarate to D-2-hydroxyglutarate. This study reports IDH1 and IDH2 genotyping results from a set of lymphomas, which included a large set of peripheral T-cell lymphomas. IDH2 mutations were identified in approximately 20% of angioimmunoblastic T-cell lymphomas (AITLs), but not in other peripheral T-cell lymphoma entities. These results were confirmed in an independent set of AITL patients, where the IDH2 mutation rate was approximately 45%. This is the second common genetic lesion identified in AITL after TET2 and extends the number of neoplastic diseases where IDH1 and IDH2 mutations may play a role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work was to develop and optimize a simple and suitable method to detect the potential inhibitory effect of drugs and medicines on alcohol dehydrogenase (ADH) activity in order to evaluate the possible interactions between medicines and alcohol metabolism. Commonly used medicines that are often involved in court litigations related with driving under the influence of alcohol were selected. Alprazolam, flunitrazepam and tramadol were tested as drugs with no known effect on ADH activity. Cimetidine, reported previously as having inhibitory effect on ADH, and 4-methylpyrazole (4-MP), a well known ADH inhibitor, were tested as positive controls. Apart from 4-MP, tramadol was identified as having the higher inhibitory effect with an IC50 of 44.7×10(-3)mM, followed by cimetidine (IC50 of 122.9×10(-3)mM). Alprazolam and flunitrazepam also reduced liver ADH activity but to a smaller extent (inhibition of 11.8±5.0% for alprazolam 1.0mM and 34.5±7.1% for flunitrazepam 0.04mM). Apart from cimetidine, this is the first report describing the inhibitory effect of these drugs on ethanol metabolism. The results also show the suitability of the method to screen for inhibitory effect of drugs on ethanol metabolism helping to identify drugs for which further study is justified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expression of the alcohol dehydrogenase gene ADH1, which converts ethanol into carcinogenic acetaldehyde, significantly inversely correlated with the expression of CDR1 and CDR2, genes linked to azole resistance in Candida albicans isolated from chronic oral candidosis in autoimmune polyendocrinopathy-candidosis-ectodermal dystrophy (APECED, APS-I) patients. This is a novel link between candidal two-carbon metabolism genes and azole resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estradiol and progesterone are crucial for the acquisition of receptivity and the change in transcriptional activity of target genes in the implantation window. The aim of this study was to differentiate the regulation of genes in the endometrium of patients with recurrent implantation failure (IF) versus those who became pregnant after in vitro fertilization (IVF) treatment. Moreover, the effect of embryo-derived factors on endometrial transcriptional activity was studied. Nine women with known IVF outcome (IF, M, miscarriage, OP, ongoing pregnancy) and undergoing hysteroscopy with endometrial biopsy were enrolled. Biopsies were taken during the midluteal phase. After culture in the presence of embryo-conditioned IVF media, total RNA was extracted and submitted to reverse transcription, target cDNA synthesis, biotin labelling, fragmentation and hybridization using the Affymetrix Human Genome U133A 2.0 Chip. Differential expression of selected genes was re-analysed by quantitative PCR, in which the results were calculated as threshold cycle differences between the groups and normalized to Glyceraldehyde phosphate dehydrogenase and beta-actin. Differences were seen for several genes from endometrial tissue between the IF and the pregnancy groups, and when comparing OP with M, 1875 up- and 1807 down-regulated genes were returned. Real-time PCR analysis confirmed up-regulation for somatostatin, PLAP-2, mucin 4 and CD163, and down-regulation of glycodelin, IL-24, CD69, leukaemia inhibitory factor and prolactin receptor between Op and M. When the different embryo-conditioned media were compared, no significant differential regulation could be demonstrated. Although microarray profiling may currently not be sensitive enough for studying the effects of embryo-derived factors on the endometrium, the observed differences in gene expression between M and OP suggest that it will become an interesting tool for the identification of fertility-relevant markers produced by the endometrium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While there is evidence that the two ubiquitously expressed thyroid hormone (T3) receptors, TRalpha1 and TRbeta1, have distinct functional specificities, the mechanism by which they discriminate potential target genes remains largely unexplained. In this study, we demonstrate that the thyroid hormone response elements (TRE) from the malic enzyme and myelin basic protein genes (METRE and MBPTRE) respectively, are not functionally equivalent. The METRE, which is a direct repeat motif with a 4-base pair gap between the two half-site hexamers binds thyroid hormone receptor as a heterodimer with 9-cis-retinoic acid receptor (RXR) and mediates a high T3-dependent activation in response to TRalpha1 or TRbeta1 in NIH3T3 cells. In contrast, the MBPTRE, which consists of an inverted palindrome formed by two hexamers spaced by 6 base pairs, confers an efficient transactivation by TRbeta1 but a poor transactivation by TRalpha1. While both receptors form heterodimers with RXR on MBPTRE, the poor transactivation by TRalpha1 correlates also with its ability to bind efficiently as a monomer. This monomer, which is only observed with TRalpha1 bound to MBPTRE, interacts neither with N-CoR nor with SRC-1, explaining its functional inefficacy. However, in Xenopus oocytes, in which RXR proteins are not detectable, the transactivation mediated by TRalpha1 and TRbeta1 is equivalent and independent of a RXR supply, raising the question of the identity of the thyroid hormone receptor partner in these cells. Thus, in mammalian cells, the binding characteristics of TRalpha1 to MBPTRE (i.e. high monomer binding efficiency and low transactivation activity) might explain the particular pattern of T3 responsiveness of MBP gene expression during central nervous system development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Nanoparticle (NPs) functionalization has been shown to affect their cellular toxicity. To study this, differently functionalized silver (Ag) and gold (Au) NPs were synthesised, characterised and tested using lung epithelial cell systems. Mehtods: Monodispersed Ag and Au NPs with a size range of 7 to 10 nm were coated with either sodium citrate or chitosan resulting in surface charges from ¿50 mV to +70 mV. NP-induced cytotoxicity and oxidative stress were determined using A549 cells, BEAS-2B cells and primary lung epithelial cells (NHBE cells). TEER measurements and immunofluorescence staining of tight junctions were performed to test the growth characteristics of the cells. Cytotoxicity was measured by means of the CellTiter-Blue ® and the lactate dehydrogenase assay and cellular and cell-free reactive oxygen species (ROS) production was measured using the DCFH-DA assay. Results: Different growth characteristics were shown in the three cell types used. A549 cells grew into a confluent mono-layer, BEAS-2B cells grew into a multilayer and NHBE cells did not form a confluent layer. A549 cells were least susceptible towards NPs, irrespective of the NP functionalization. Cytotoxicity in BEAS-2B cells increased when exposed to high positive charged (+65-75 mV) Au NPs. The greatest cytotoxicity was observed in NHBE cells, where both Ag and Au NPs with a charge above +40 mV induced cytotoxicity. ROS production was most prominent in A549 cells where Au NPs (+65-75 mV) induced the highest amount of ROS. In addition, cell-free ROS measurements showed a significant increase in ROS production with an increase in chitosan coating. Conclusions: Chitosan functionalization of NPs, with resultant high surface charges plays an important role in NP-toxicity. Au NPs, which have been shown to be inert and often non-cytotoxic, can become toxic upon coating with certain charged molecules. Notably, these effects are dependent on the core material of the particle, the cell type used for testing and the growth characteristics of these cell culture model systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the application of a real-time quantitative PCR assay, previously developed to measure relative telomere length in humans and mice, to two bird species, the zebra finch Taeniopygia guttata and the Alpine swift Apus melba. This technique is based on the PCR amplification of telomeric (TTAGGG)(n) sequences using specific oligonucleotide primers. Relative telomere length is expressed as the ratio (T/S) of telomere repeat copy number (T) to control single gene copy number (S). This method is particularly useful for comparisons of individuals within species, or where the same individuals are followed longitudinally. We used glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a single control gene. In both species, we validated our PCR measurements of relative telomere length against absolute measurements of telomere length determined by the conventional method of quantifying telomere terminal restriction fragment (TRF) lengths using both the traditional Southern blot analysis (Alpine swifts) and in gel hybridization (zebra finches). As found in humans and mice, telomere lengths in the same sample measured by TRF and PCR were well correlated in both the Alpine swift and the zebra finch.. Hence, this PCR assay for measurement of bird telomeres, which is fast and requires only small amounts of genomic DNA, should open new avenues in the study of environmental factors influencing variation in telomere length, and how this variation translates into variation in cellular and whole organism senescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expression by Saccharomyces cerevisiae of a polyhydroxyalkanoate (PHA) synthase modified at the carboxy end by the addition of a peroxisome targeting signal derived from the last 34 amino acids of the Brassica napus isocitrate lyase (ICL) and containing the terminal tripeptide Ser-Arg-Met resulted in the synthesis of PHA. The ability of the terminal peptide Ser-Arg-Met and of the 34-amino-acid peptide from the B. napus ICL to target foreign proteins to the peroxisome of S. cerevisiae was demonstrated with green fluorescent protein fusions. PHA synthesis was found to be dependent on the presence of both the enzymes generating the beta-oxidation intermediate 3-hydroxyacyl-coenzyme A (3-hydroxyacyl-[CoA]) and the peroxin-encoding PEX5 gene, demonstrating the requirement for a functional peroxisome and a beta-oxidation cycle for PHA synthesis. Using a variant of the S. cerevisiae beta-oxidation multifunctional enzyme with a mutation inactivating the B domain of the R-3-hydroxyacyl-CoA dehydrogenase, it was possible to modify the PHA monomer composition through an increase in the proportion of the short-chain monomers of five and six carbons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aldosterone and corticosterone bind to mineralocorticoid (MR) and glucocorticoid receptors (GR), which, upon ligand binding, are thought to translocate to the cell nucleus to act as transcription factors. Mineralocorticoid selectivity is achieved by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) that inactivates 11β-hydroxy glucocorticoids. High expression levels of 11β-HSD2 characterize the aldosterone-sensitive distal nephron (ASDN), which comprises the segment-specific cells of late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct (CD). We used MR- and GR-specific antibodies to study localization and regulation of MR and GR in kidneys of rats with altered plasma aldosterone and corticosterone levels. In control rats, MR and GR were found in cell nuclei of thick ascending limb (TAL), DCT, CNT, CD cells, and intercalated cells (IC). GR was also abundant in cell nuclei and the subapical compartment of proximal tubule (PT) cells. Dietary NaCl loading, which lowers plasma aldosterone, caused a selective removal of GR from cell nuclei of 11β-HSD2-positive ASDN. The nuclear localization of MR was unaffected. Adrenalectomy (ADX) resulted in removal of MR and GR from the cell nuclei of all epithelial cells. Aldosterone replacement rapidly relocated the receptors in the cell nuclei. In ASDN cells, low-dose corticosterone replacement caused nuclear localization of MR, but not of GR. The GR was redistributed to the nucleus only in PT, TAL, early DCT, and IC that express no or very little 11β-HSD2. In ASDN cells, nuclear GR localization was only achieved when corticosterone was replaced at high doses. Thus ligand-induced nuclear translocation of MR and GR are part of MR and GR regulation in the kidney and show remarkable segment- and cell type-specific characteristics. Differential regulation of MR and GR may alter the level of heterodimerization of the receptors and hence may contribute to the complexity of corticosteroid effects on ASDN function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salt and heat stresses, which are often combined in nature, induce complementing defense mechanisms. Organisms adapt to high external salinity by accumulating small organic compounds known as osmolytes, which equilibrate cellular osmotic pressure. Osmolytes can also act as "chemical chaperones" by increasing the stability of native proteins and assisting refolding of unfolded polypeptides. Adaptation to heat stress depends on the expression of heat-shock proteins, many of which are molecular chaperones, that prevent protein aggregation, disassemble protein aggregates, and assist protein refolding. We show here that Escherichia coli cells preadapted to high salinity contain increased levels of glycine betaine that prevent protein aggregation under thermal stress. After heat shock, the aggregated proteins, which escaped protection, were disaggregated in salt-adapted cells as efficiently as in low salt. Here we address the effects of four common osmolytes on chaperone activity in vitro. Systematic dose responses of glycine betaine, glycerol, proline, and trehalose revealed a regulatory effect on the folding activities of individual and combinations of chaperones GroEL, DnaK, and ClpB. With the exception of trehalose, low physiological concentrations of proline, glycerol, and especially glycine betaine activated the molecular chaperones, likely by assisting local folding in chaperone-bound polypeptides and stabilizing the native end product of the reaction. High osmolyte concentrations, especially trehalose, strongly inhibited DnaK-dependent chaperone networks, such as DnaK+GroEL and DnaK+ClpB, likely because high viscosity affects dynamic interactions between chaperones and folding substrates and stabilizes protein aggregates. Thus, during combined salt and heat stresses, cells can specifically control protein stability and chaperone-mediated disaggregation and refolding by modulating the intracellular levels of different osmolytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Transferrin (Tf) expression is enhanced by aging and inflammation in humans. We investigated the role of transferrin in glial protection. METHODS: We generated transgenic mice (Tg) carrying the complete human transferrin gene on a C57Bl/6J genetic background. We studied human (hTf) and mouse (mTf) transferrin localization in Tg and wild-type (WT) C57Bl/6J mice using immunochemistry with specific antibodies. Müller glial (MG) cells were cultured from explants and characterized using cellular retinaldehyde binding protein (CRALBP) and vimentin antibodies. They were further subcultured for study. We incubated cells with FeCl(3)-nitrilotriacetate to test for the iron-induced stress response; viability was determined by direct counting and measurement of lactate dehydrogenase (LDH) activity. Tf expression was determined by reverse transcriptase-quantitative PCR with human- or mouse-specific probes. hTf and mTf in the medium were assayed by ELISA or radioimmunoassay (RIA), respectively. RESULTS: mTf was mainly localized in retinal pigment epithelium and ganglion cell layers in retina sections of both mouse lines. hTf was abundant in MG cells. The distribution of mTf and hTf mRNA was consistent with these findings. mTf and hTf were secreted into the medium of MG cell primary cultures. Cells from Tg mice secreted hTf at a particularly high level. However, both WT and Tg cell cultures lose their ability to secrete Tf after a few passages. Tg MG cells secreting hTf were more resistant to iron-induced stress toxicity than those no longer secreted hTf. Similarly, exogenous human apo-Tf, but not human holo-Tf, conferred resistance to iron-induced stress on MG cells from WT mice. CONCLUSIONS: hTf localization in MG cells from Tg mice was reminiscent of that reported for aged human retina and age-related macular degeneration, both conditions associated with iron deposition. The role of hTf in protection against toxicity in Tg MG cells probably involves an adaptive mechanism developed in neural retina to control iron-induced stress.