156 resultados para ABERRANT GLYCOSYLATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To emphasize that complex regional pain syndrome (CRPS), a disabling disorder with the implication of aberrant inflammation, vasomotor dysfunction, and maladaptive neuroplasticity, might be treated with a high dose of intravenous immunoglobulin infusions (IVIG). METHODS: We describe a patient who presented with CRPS in the acute phase of the disease. RESULTS: The CRPS developed secondary to sciatic compression in a young patient and was treated within 10 days by high-dose IVIG (2 g/kg). It resolved completely within days after infusions. DISCUSSION: This observational study emphasizes that high-dose IVIG may be a treatment option in the acute phase of CRPS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors in myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type 1 diabetic cardiomyopathy. Diabetic cardiomyopathy was characterized by increased myocardial endocannabinoid anandamide levels, oxidative/nitrative stress, activation of p38/Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs), enhanced inflammation (tumor necrosis factor-α, interleukin-1β, cyclooxygenase 2, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), increased expression of CB(1), advanced glycation end product (AGE) and angiotensin II type 1 receptors (receptor for advanced glycation end product [RAGE], angiotensin II receptor type 1 [AT(1)R]), p47(phox) NADPH oxidase subunit, β-myosin heavy chain isozyme switch, accumulation of AGE, fibrosis, and decreased expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a). Pharmacological inhibition or genetic deletion of CB(1) receptors attenuated the diabetes-induced cardiac dysfunction and the above-mentioned pathological alterations. Activation of CB(1) receptors by endocannabinoids may play an important role in the pathogenesis of diabetic cardiomyopathy by facilitating MAPK activation, AT(1)R expression/signaling, AGE accumulation, oxidative/nitrative stress, inflammation, and fibrosis. Conversely, CB(1) receptor inhibition may be beneficial in the treatment of diabetic cardiovascular complications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myeloid cell leukemia-1 (MCL1) is an anti-apoptotic member of the BCL2 family that is deregulated in various solid and hematological malignancies. However, its role in the molecular pathogenesis of diffuse large B-cell lymphoma (DLBCL) is unclear. We analyzed gene expression profiling data from 350 DLBCL patient samples and detected that activated B-cell-like (ABC) DLBCLs express MCL1 at significantly higher levels compared with germinal center B-cell-like DLBCL patient samples (P=2.7 × 10(-10)). Immunohistochemistry confirmed high MCL1 protein expression predominantly in ABC DLBCL in an independent patient cohort (n=249; P=0.001). To elucidate molecular mechanisms leading to aberrant MCL1 expression, we analyzed array comparative genomic hybridization data of 203 DLBCL samples and identified recurrent chromosomal gains/amplifications of the MCL1 locus that occurred in 26% of ABC DLBCLs. In addition, aberrant STAT3 signaling contributed to high MCL1 expression in this subtype. Knockdown of MCL1 as well as treatment with the BH3-mimetic obatoclax induced apoptotic cell death in MCL1-positive DLBCL cell lines. In summary, MCL1 is deregulated in a significant fraction of ABC DLBCLs and contributes to therapy resistance. These data suggest that specific inhibition of MCL1 might be utilized therapeutically in a subset of DLBCLs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1-4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the case of an asymptomatic neonate prenatally diagnosed with a left basal pulmonary sequestration. The preoperative chest computed tomography with contrast showed 2 aberrant arteries arising from the distal thoracic aorta and supplying the intralobar left inferior lung malformation. Strategy and treatment by thoracoscopic segmentectomy are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Mouse Mammary Tumor Virus (MMTV) long terminal repeat contains an open reading frame (orf) of 960 nucleotides encoding a 36 kDa polypeptide with a putative transmembrane domain and five N-glycosylation sites in the N-terminal part of the protein. Transgenic mice bearing either the complete or the 3' terminal half of the orf sequence of MMTV-GR under the control of the SV40 promoter were raised. As shown previously by FACS analysis transgenic mice which express the complete orf gene have a significant deletion of V beta 14 expressing T cells at 6 weeks of age. Here we show that no clonal deletion of V beta 14 bearing T cells takes place in transgenic mice that contain orf sequences from the fifth ATG to the termination codon. The pattern of tissues expressing the truncated transgene was studied by the Polymerase Chain Reaction (PCR) and was very similar to the one obtained in the V beta 14 deleting animals. These data suggest that the amino-terminal portion of the ORF protein (pORF) is required for a superantigen function, while our previous data indicated that determinants from the carboxy-terminus play an important role for TCR V beta specificity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stimulation ofcortisol secretion by food intake has been implicated in the pathogenesis of some cases of ACTH-independent Cushing's syndrome, via an aberrant response of the adrenal glands to gastric inhibitory polypeptide (GIP). We report here a novel case of food-dependent Cushing's syndrome in a patient with bilateral macronodular adrenal hyperplasia. In this patient we were able to confirm a paradoxical stimulation of cortisol secretion by GIP in vivo as well as in vitro on dispersed tumor adrenal cells obtained at surgery. In addition to GIP, in vitro stimulation of these cultured tumor adrenal cells with leptin, the secreted product of the adipocyte, induced cortisol secretion. By comparison, no such stimulation was observed in vitro in adrenal cells obtained from another patient with bilateral macronodular adrenal hyperplasia and Cushing's syndrome that did not depend on food intake, in tumor cells obtained from a solitary cortisol-secreting adrenal adenoma, and in normal human adrenocortical cells. These results demonstrate that as in previously described cases of food-dependent Cushing's syndrome, GIP stimulated cortisol secretion from the adrenals of the patient reported here. Therefore, they indicate that such a paradoxical response probably represents the hallmark of this rare condition. In addition, they suggest that leptin, which normally inhibits stimulated cortisol secretion in humans, participated in cortisol hypersecretion in this case. Further studies in other cases of food-dependent Cushing's syndrome, however, will be necessary to better ascertain the pathophysiological significance of this finding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite intensive research efforts, the aetiology of the majority of chronic lung diseases (CLD) in both, children and adults, remains elusive. Current therapeutic options are limited, providing only symptomatic relief, rather than treating the underlying condition, or preventing its development in the first place. Thus, there is a strong and unmet clinical need for the development of both, novel effective therapies and preventative strategies for CLD. Many studies suggest that modifications of prenatal and/or early postnatal lung development will have important implications for future lung function and risk of CLD throughout life. This view represents a fundamental change of current pathophysiological concepts and treatment paradigms, and holds the potential to develop novel preventative and/or therapeutic strategies. However, for the successful development of such approaches, key questions, such as a clear understanding of underlying mechanisms of impaired lung development, the identification and validation of relevant preclinical models to facilitate translational research, and the development of concepts for correction of aberrant development, all need to be solved. Accordingly, a European Science Foundation Exploratory Workshop was held where clinical, translational and basic research scientists from different disciplines met to discuss potential mechanisms of developmental origins of CLD, and to identify major knowledge gaps in order to delineate a roadmap for future integrative research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epidermal growth factor (EGF) receptor/ligand system stimulates multiple pathways of signal transduction, and is activated by various extracellular stimuli and inter-receptor crosstalk signaling. Aberrant activation of EGF receptor (EGFR) signaling is found in many tumor cells, and humanized neutralizing antibodies and synthetic small compounds against EGFR are in clinical use today. However, these drugs are known to cause a variety of skin toxicities such as inflammatory rash, skin dryness, and hair abnormalities. These side effects demonstrate the multiple EGFR-dependent homeostatic functions in human skin. The epidermis and hair follicles are self-renewing tissues, and keratinocyte stem cells are crucial for maintaining these homeostasis. A variety of molecules associated with the EGF receptor/ligand system are involved in epidermal homeostasis and hair follicle development, and the modulation of EGFR signaling impacts the behavior of keratinocyte stem cells. Understanding the roles of the EGF receptor/ligand system in skin homeostasis is an emerging issue in dermatology to improve the current therapy for skin disorders, and the EGFR inhibitor-associated skin toxicities. Besides, controlling of keratinocyte stem cells by modulating the EGF receptor/ligand system assures advances in regenerative medicine of the skin. We present an overview of the recent progress in the field of the EGF receptor/ligand system on skin homeostasis and regulation of keratinocyte stem cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alteration of the surface glycosylation pattern on malignant cells potentially affects tumor immunity by directly influencing interactions with glycan-binding proteins (lectins) on the surface of immunomodulatory cells. The sialic acid-binding Ig-like lectins Siglec-7 and -9 are MHC class I-independent inhibitory receptors on human NK cells that recognize sialic acid-containing carbohydrates. Here, we found that the presence of Siglec-9 defined a subset of cytotoxic NK cells with a mature phenotype and enhanced chemotactic potential. Interestingly, this Siglec-9+ NK cell population was reduced in the peripheral blood of cancer patients. Broad analysis of primary tumor samples revealed that ligands of Siglec-7 and -9 were expressed on human cancer cells of different histological types. Expression of Siglec-7 and -9 ligands was associated with susceptibility of NK cell-sensitive tumor cells and, unexpectedly, of presumably NK cell-resistant tumor cells to NK cell-mediated cytotoxicity. Together, these observations have direct implications for NK cell-based therapies and highlight the requirement to consider both MHC class I haplotype and tumor-specific glycosylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Microsporum canis is a dermatophyte responsible for cutaneous superficial mycoses in domestic carnivores and humans. The pathogenesis of dermatophytoses, including M. canis infections, remains poorly understood. Secreted proteases including members of the subtilisin family are thought to be involved in the infection process. In particular the subtilisin Sub6 could represent a major virulence factor.Objective: The aim of this work was to (i) isolate the M. canis SUB6 genomic DNA and cDNA (ii) produce Sub6 as a recombinant protease (rSub6) and (iii) produce a specific anti-Sub6 polyclonal serum. Material and methods: Genomic SUB6 was amplified by PCR using specific primers and M. canis IHEM 21239 DNA as a target. The SUB6 cDNA was obtained by reverse transcriptase (RT)-PCR using total RNA extracted from the same M. canis strain grown in liquid medium containing feline keratin as unique nitrogen source. Both SUB6 cDNA and genomic DNA were sequenced. The SUB6 cDNA was cloned in pPICZA to produce recombinant Sub6 (rSub6) in Pichia pastoris KM71. This protease rSub6 was produced in methanol medium at a yield of 30 mg ml)1 and purified by anion exchange chromatography using a DEAE-sepharose column. Polyclonal antibodies against purified rSub6 were produced in a rabbit using a standard immunization procedure with saponin as the adjuvant. Seventy days after the first immunization, serum was collected and IgG were purified by affinity chromatography.Results: The coding sequence for M. canis SUB6 from genomic DNA contains 1410 bp and 3 introns, while the cDNA contains a 1221 bp open reading frame. Deduced amino acid sequence analysis revealed that Sub6 is synthesized as a 406 amino acids preproprotein. The predicted catalytic domain has 286 amino acids, a molecular mass of 29.1 kDa and five potential N-glycosylation sites. SDS-PAGE of rSub6 revealed a single polypeptide chain with an apparent molecular mass of 37 kDa. Purified rabbit IgG were shown to be specific for Sub6 using ELISA.Conclusion: We have characterized for the first time Sub6 from a dermatophyte species as a recombinant secreted active enzyme and purified it until homogeneity. Active rSub6 and Sub6 specific antiserum will be used to further study the role of M. canis Sub6 protease in pathogenesis, notably the pattern of in vivo Sub6 secretion in different host species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested for antigen recognition and T cell receptor (TCR)-ligand binding 12 peptide derivative variants on seven H-2Kd-restricted cytotoxic T lymphocytes (CTL) clones specific for a bifunctional photoreactive derivative of the Plasmodium berghei circumsporozoite peptide 252-260 (SYIPSAEKI). The derivative contained iodo-4-azidosalicylic acid in place of PbCS S-252 and 4-azidobenzoic acid on PbCS K-259. Selective photoactivation of the N-terminal photoreactive group allowed crosslinking to Kd molecules and photoactivation of the orthogonal group to TCR. TCR photoaffinity labeling with covalent Kd-peptide derivative complexes allowed direct assessment of TCR-ligand binding on living CTL. In most cases (over 80%) cytotoxicity (chromium release) and TCR-ligand binding differed by less than fivefold. The exceptions included (a) partial TCR agonists (8 cases), for which antigen recognition was five-tenfold less efficient than TCR-ligand binding, (b) TCR antagonists (2 cases), which were not recognized and capable of inhibiting recognition of the wild-type conjugate, (c) heteroclitic agonists (2 cases), for which antigen recognition was more efficient than TCR-ligand binding, and (d) one partial TCR agonist, which activated only Fas (C1)95), but not perforin/granzyme-mediated cytotoxicity. There was no correlation between these divergences and the avidity of TCR-ligand binding, indicating that other factors than binding avidity determine the nature of the CTL response. An unexpected and novel finding was that CD8-dependent clones clearly incline more to TCR antagonism than CD8-independent ones. As there was no correlation between CD8 dependence and the avidity of TCR-ligand binding, the possibility is suggested that CD8 plays a critical role in aberrant CTL function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have characterized the maturation, co- and posttranslational modifications, and functional properties of the alpha(1B)-adrenergic receptor (AR) expressed in different mammalian cells transfected using conventional approaches or the Semliki Forest virus system. We found that the alpha(1B)-AR undergoes N-linked glycosylation as demonstrated by its sensitivity to endoglycosidases and by the effect of tunicamycin on receptor maturation. Pulse-chase labeling experiments in BHK-21 cells demonstrate that the alpha(1B)-AR is synthesized as a 70 kDa core glycosylated precursor that is converted to the 90 kDa mature form of the receptor with a half-time of approximately 2 h. N-Linked glycosylation of the alpha(1B)-AR occurs at four asparagines on the N-terminus of the receptor. Mutations of the N-linked glycosylation sites did not have a significant effect on receptor function or expression. Surprisingly, receptor mutants lacking N-linked glycosylation migrated as heterogeneous bands in SDS-PAGE. Our findings demonstrate that N-linked glycosylation and phosphorylation, but not palmitoylation or O-linked glycosylation, contribute to the structural heterogeneity of the alpha(1B)-AR as it is observed in SDS-PAGE. The modifications found are similar in the different mammalian expression systems explored. Our findings indicate that the Semliki Forest virus system can provide large amounts of functional and fully glycosylated alpha(1B)-AR protein suitable for biochemical and structural studies. The results of this study contribute to elucidate the basic steps involved in the processing of G protein-coupled receptors as well as to optimize strategies for their overexpression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract We have analyzed purine (R) and pyrimidine (Y) codon patterns in variable and constant regions of HIV-1 gp120 in seven patients infected with different HIV-1 subtypes and naive to antiretroviral therapy. We have calculated the relative frequency of each in-frame codon RNY, YNR, RNR, and YNY (N=any nucleotide) in variable and constant regions of gp120, in the sequence within indels and at indels' flanking sites. Our data show that hypervariable regions V1, V2, V4, and V5 are characterized by the presence of long stretches of RNY codons constituting the majority of the sequence portion within insertions/deletions. In full-length gp120 and within inserted/deleted fragments the number of AVT (V=A, C, G) codons did not exceed 50% of the total RNY codons. RNY strings in variable regions spanned up to 21 codons and were always in frame. In contrast, RNY strings in constant regions were mostly out of frame and their length was limited to five codons. The frequency of the codon RNY was found to be significantly higher in variable regions (p<0.0001; t-test), within indels, and at indels' flanking sites (p<0.0001; χ(2) test). Analysis of the distribution of RNY strings equal to or longer than five codons in the full genome of HXB2 also shows that these sequences are mostly out of frame, unless they contain a potential N-glycosylation site or an asparagine. These data suggest that cryptic repeats of RNY may play a role in the genesis of multiple base insertions and deletions in hypervariable regions of gp120.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While genetic mutation is a hallmark of cancer, many cancers also acquire epigenetic alterations during tumorigenesis including aberrant DNA hypermethylation of tumor suppressors, as well as changes in chromatin modifications as caused by genetic mutations of the chromatin-modifying machinery. However, the extent of epigenetic alterations in cancer cells has not been fully characterized. Here, we describe complete methylome maps at single nucleotide resolution of a low-passage breast cancer cell line and primary human mammary epithelial cells. We find widespread DNA hypomethylation in the cancer cell, primarily at partially methylated domains (PMDs) in normal breast cells. Unexpectedly, genes within these regions are largely silenced in cancer cells. The loss of DNA methylation in these regions is accompanied by formation of repressive chromatin, with a significant fraction displaying allelic DNA methylation where one allele is DNA methylated while the other allele is occupied by histone modifications H3K9me3 or H3K27me3. Our results show a mutually exclusive relationship between DNA methylation and H3K9me3 or H3K27me3. These results suggest that global DNA hypomethylation in breast cancer is tightly linked to the formation of repressive chromatin domains and gene silencing, thus identifying a potential epigenetic pathway for gene regulation in cancer cells.