176 resultados para surface topography
Resumo:
Fas (CD95/Apo-1) ligand is a potent inducer of apoptosis and one of the major killing effector mechanisms of cytotoxic T cells. Thus, Fas ligand activity has to be tightly regulated, involving various transcriptional and post-transcriptional processes. For example, preformed Fas ligand is stored in secretory lysosomes of activated T cells, and rapidly released by degranulation upon reactivation. In this study, we analyzed the minimal requirements for activation-induced degranulation of Fas ligand. T cell receptor activation can be mimicked by calcium ionophore and phorbol ester. Unexpectedly, we found that stimulation with phorbol ester alone is sufficient to trigger Fas ligand release, whereas calcium ionophore is neither sufficient nor necessary. The relevance of this process was confirmed in primary CD4(+) and CD8(+) T cells and NK cells. Although the activation of protein kinase(s) was absolutely required for Fas ligand degranulation, protein kinase C or A were not involved. Previous reports have shown that preformed Fas ligand co-localizes with other markers of cytolytic granules. We found, however, that the activation-induced degranulation of Fas ligand has distinct requirements and involves different mechanisms than those of the granule markers CD63 and CD107a/Lamp-1. We conclude that activation-induced degranulation of Fas ligand in cytotoxic lymphocytes is differently regulated than other classical cytotoxic granule proteins.
Resumo:
OBJECTIVES: To assess the accuracy of high-resolution (HR) magnetic resonance imaging (MRI) in diagnosing early-stage optic nerve (ON) invasion in a retinoblastoma cohort. METHODS: This IRB-approved, prospective multicenter study included 95 patients (55 boys, 40 girls; mean age, 29 months). 1.5-T MRI was performed using surface coils before enucleation, including spin-echo unenhanced and contrast-enhanced (CE) T1-weighted sequences (slice thickness, 2 mm; pixel size <0.3 × 0.3 mm(2)). Images were read by five neuroradiologists blinded to histopathologic findings. ROC curves were constructed with AUC assessment using a bootstrap method. RESULTS: Histopathology identified 41 eyes without ON invasion and 25 with prelaminar, 18 with intralaminar and 12 with postlaminar invasion. All but one were postoperatively classified as stage I by the International Retinoblastoma Staging System. The accuracy of CE-T1 sequences in identifying ON invasion was limited (AUC = 0.64; 95 % CI, 0.55 - 0.72) and not confirmed for postlaminar invasion diagnosis (AUC = 0.64; 95 % CI, 0.47 - 0.82); high specificities (range, 0.64 - 1) and negative predictive values (range, 0.81 - 0.97) were confirmed. CONCLUSION: HR-MRI with surface coils is recommended to appropriately select retinoblastoma patients eligible for primary enucleation without the risk of IRSS stage II but cannot substitute for pathology in differentiating the first degrees of ON invasion. KEY POINTS: • HR-MRI excludes advanced optic nerve invasion with high negative predictive value. • HR-MRI accurately selects patients eligible for primary enucleation. • Diagnosis of early stages of optic nerve invasion still relies on pathology. • Several physiological MR patterns may mimic optic nerve invasion.
Resumo:
A new method is used to estimate the volumes of sediments of glacial valleys. This method is based on the concept of sloping local base level and requires only a digital terrain model and the limits of the alluvial valleys as input data. The bedrock surface of the glacial valley is estimated by a progressive excavation of the digital elevation model (DEM) of the filled valley area. This is performed using an iterative routine that replaces the altitude of a point of the DEM by the mean value of its neighbors minus a fixed value. The result is a curved surface, quadratic in 2D. The bedrock surface of the Rhone Valley in Switzerland was estimated by this method using the free digital terrain model Shuttle Radar Topography Mission (SRTM) (~92 m resolution). The results obtained are in good agreement with the previous estimations based on seismic profiles and gravimetric modeling, with the exceptions of some particular locations. The results from the present method and those from the seismic interpretation are slightly different from the results of the gravimetric data. This discrepancy may result from the presence of large buried landslides in the bottom of the Rhone Valley.
Resumo:
Recent advances in remote sensing technologies have facilitated the generation of very high resolution (VHR) environmental data. Exploratory studies suggested that, if used in species distribution models (SDMs), these data should enable modelling species' micro-habitats and allow improving predictions for fine-scale biodiversity management. In the present study, we tested the influence, in SDMs, of predictors derived from a VHR digital elevation model (DEM) by comparing the predictive power of models for 239 plant species and their assemblages fitted at six different resolutions in the Swiss Alps. We also tested whether changes of the model quality for a species is related to its functional and ecological characteristics. Refining the resolution only contributed to slight improvement of the models for more than half of the examined species, with the best results obtained at 5 m, but no significant improvement was observed, on average, across all species. Contrary to our expectations, we could not consistently correlate the changes in model performance with species characteristics such as vegetation height. Temperature, the most important variable in the SDMs across the different resolutions, did not contribute any substantial improvement. Our results suggest that improving resolution of topographic data only is not sufficient to improve SDM predictions - and therefore local management - compared to previously used resolutions (here 25 and 100 m). More effort should be dedicated now to conduct finer-scale in-situ environmental measurements (e.g. for temperature, moisture, snow) to obtain improved environmental measurements for fine-scale species mapping and management.
Resumo:
Proteins located on the surface of the pathogenic malaria parasite Plasmodium falciparum are objects of intensive studies due to their important role in the invasion of human cells and the accessibility to host antibodies thus making these proteins attractive vaccine candidates. One of these proteins, merozoite surface protein 3 (MSP3) represents a leading component among vaccine candidates; however, little is known about its structure and function. Our biophysical studies suggest that the 40 residue C-terminal domain of MSP3 protein self-assembles into a four-stranded alpha-helical coiled coil structure where alpha-helices are packed "side-by-side". A bioinformatics analysis provides an extended list of known and putative proteins from different species of Plasmodium which have such MSP3-like C-terminal domains. This finding allowed us to extend some conclusions of our studies to a larger group of the malaria surface proteins. Possible structural and functional roles of these highly conserved oligomerization domains in the intact merozoite surface proteins are discussed.
Resumo:
The determination of line crossing sequences between rollerball pens and laser printers presents difficulties that may not be overcome using traditional techniques. This research aimed to study the potential of digital microscopy and 3-D laser profilometry to determine line crossing sequences between a toner and an aqueous ink line. Different paper types, rollerball pens, and writing pressure were tested. Correct opinions of the sequence were given for all case scenarios, using both techniques. When the toner was printed before the ink, a light reflection was observed in all crossing specimens, while this was never observed in the other sequence types. The 3-D laser profilometry, more time-consuming, presented the main advantage of providing quantitative results. The findings confirm the potential of the 3-D laser profilometry and demonstrate the efficiency of digital microscopy as a new technique for determining the sequence of line crossings involving rollerball pen ink and toner. With the mass marketing of laser printers and the popularity of rollerball pens, the determination of line crossing sequences between such instruments is encountered by forensic document examiners. This type of crossing presents difficulties with optical microscopic line crossing techniques involving ballpoint pens or gel pens and toner (1-4). Indeed, the rollerball's aqueous ink penetrates through the toner and is absorbed by the fibers of the paper, leaving the examiner with the impression that the toner is above the ink even when it is not (5). Novotny and Westwood (3) investigated the possibility of determining aqueous ink and toner crossing sequences by microscopic observation of the intersection before and after toner removal. A major disadvantage of their study resides in destruction of the sample by scraping off the toner line to see what was underneath. The aim of this research was to investigate the ways to overcome these difficulties through digital microscopy and three-dimensional (3-D) laser profilometry. The former was used as a technique for the determination of sequences between gel pen and toner printing strokes, but provided less conclusive results than that of an optical stereomicroscope (4). 3-D laser profilometry, which allows one to observe and measure the topography of a surface, has been the subject of a number of recent studies in this area. Berx and De Kinder (6) and Schirripa Spagnolo (7,8) have tested the application of laser profilometry to determine the sequence of intersections of several lines. The results obtained in these studies overcome disadvantages of other methods applied in this area, such as scanning electron microscope or the atomic force microscope. The main advantages of 3-D laser profilometry include the ease of implementation of the technique and its nondestructive nature, which does not require sample preparation (8-10). Moreover, the technique is reproducible and presents a high degree of freedom in the vertical axes (up to 1000 μm). However, when the paper surface presents a given roughness, if the pen impressions alter the paper with a depth similar to the roughness of medium, the results are not always conclusive (8). It becomes difficult in this case to distinguish which characteristics can be imputed to the pen impressions or the quality of the paper surface. This important limitation is assessed by testing different types of paper of variable quality (of different grammage and finishing) and the writing pressure. The authors will therefore assess the limits of 3-D laser profilometry technique and determine whether the method can overcome such constraints. Second, the authors will investigate the use of digital microscopy because it presents a number of advantages: it is efficient, user-friendly, and provides an objective evaluation and interpretation.
Resumo:
Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content.
Resumo:
Canine distemper virus (CDV), a member of the genus Morbillivirus induces a highly infectious, frequently lethal disease in dogs and other carnivores. Current vaccines against canine distemper consisting of attenuated viruses have been in use for many years and have greatly reduced the incidence of distemper in the dog population. However, certain strains may not guarantee adequate protection and others can induce post vaccinal encephalitis. We tested a DNA vaccine for its ability to protect dogs, the natural host of CDV, against distemper. We constructed plasmids containing the nucleocapsid, the fusion, and the attachment protein genes of a virulent canine distemper virus strain. Mice inoculated with these plasmids developed humoral and cellular immune responses against CDV antigens. Dogs immunized with the expression plasmids developed virus-neutralizing antibodies. Significantly, vaccinated dogs were protected against challenge with virulent CDV, whereas unvaccinated animals succumbed to distemper.
Resumo:
Previous research has provided inconsistent results regarding the spatial modulation of auditory-somatosensory interactions. The present study reports three experiments designed to investigate the nature of these interactions in the space close to the head. Human participants made speeded detection responses to unimodal auditory, somatosensory, or simultaneous auditory-somatosensory stimuli. In Experiment 1, electrocutaneous stimuli were presented to either earlobe, while auditory stimuli were presented from the same versus opposite sides, and from one of two distances (20 vs. 70cm) from the participant's head. The results demonstrated a spatial modulation of auditory-somatosensory interactions when auditory stimuli were presented from close to the head. In Experiment 2, electrocutaneous stimuli were delivered to the hands, which were placed either close to or far from the head, while the auditory stimuli were again presented at one of two distances. The results revealed that the spatial modulation observed in Experiment 1 was specific to the particular body part stimulated (head) rather than to the region of space (i.e. around the head) where the stimuli were presented. The results of Experiment 3 demonstrate that sounds that contain high-frequency components are particularly effective in eliciting this auditory-somatosensory spatial effect. Taken together, these findings help to resolve inconsistencies in the previous literature and suggest that auditory-somatosensory multisensory integration is modulated by the stimulated body surface and acoustic spectra of the stimuli presented.
Resumo:
In this tutorial review, we detail both the rationale for as well as the implementation of a set of analyses of surface-recorded event-related potentials (ERPs) that uses the reference-free spatial (i.e. topographic) information available from high-density electrode montages to render statistical information concerning modulations in response strength, latency, and topography both between and within experimental conditions. In these and other ways these topographic analysis methods allow the experimenter to glean additional information and neurophysiologic interpretability beyond what is available from canonical waveform analyses. In this tutorial we present the example of somatosensory evoked potentials (SEPs) in response to stimulation of each hand to illustrate these points. For each step of these analyses, we provide the reader with both a conceptual and mathematical description of how the analysis is carried out, what it yields, and how to interpret its statistical outcome. We show that these topographic analysis methods are intuitive and easy-to-use approaches that can remove much of the guesswork often confronting ERP researchers and also assist in identifying the information contained within high-density ERP datasets
Resumo:
INTRODUCTION: To compare the power spectral changes of the voluntary surface electromyogram (sEMG) and of the compound action potential (M wave) in the vastus medialis and vastus lateralis muscles during fatiguing contractions. METHODS: Interference sEMG and force were recorded during 48 intermittent 3-s isometric maximal voluntary contractions (MVC) from 13 young, healthy subjects. M waves and twitches were evoked using supramaximal femoral nerve stimulation between the successive MVCs. Mean frequency (F mean), and median frequency were calculated from the sEMG and M waves. Muscle fiber conduction velocity (MFCV) was computed by cross-correlation. RESULTS: The power spectral shift to lower frequencies was significantly greater for the voluntary sEMG than for the M waves (P < 0.05). Over the fatiguing protocol, the overall average decrease in MFCV (~25 %) was comparable to that of sEMG F mean (~22 %), but significantly greater than that of M-wave F mean (~9 %) (P < 0.001). The mean decline in MFCV was highly correlated with the mean decreases in both sEMG and M-wave F mean. CONCLUSIONS: The present findings indicated that, as fatigue progressed, central mechanisms could enhance the relative weight of the low-frequency components of the voluntary sEMG power spectrum, and/or the end-of-fiber (non-propagating) components could reduce the sensitivity of the M-wave spectrum to changes in conduction velocity.
Resumo:
Powerful volatile regulators of gene expression, pheromones and other airborne signals are of great interest in biology. Plants are masters of volatile production and release, not just from flowers and fruits, but also from vegetative tissues. The controlled release of bouquets of volatiles from leaves during attack by herbivores helps plants to deter herbivores or attract their predators, but volatiles have other roles in development and in the control of defence gene expression. Some of these roles may include long-distance signalling within and perhaps between plants.
Resumo:
Diffusion magnetic resonance studies of the brain are typically performed using volume coils. Although in human brain this leads to a near optimal filling factor, studies of rodent brain must contend with the fact that only a fraction of the head volume can be ascribed to the brain. The use of surface coil as transceiver increases Signal-to-Noise Ratio (SNR), reduces radiofrequency power requirements and opens the possibility of parallel transmit schemes, likely to allow efficient acquisition schemes, of critical importance for reducing the long scan times implicated in diffusion tensor imaging. This study demonstrates the implementation of a semiadiabatic echo planar imaging sequence (echo time=40 ms, four interleaves) at 14.1T using a quadrature surface coil as transceiver. It resulted in artifact free images with excellent SNR throughout the brain. Diffusion tensor derived parameters obtained within the rat brain were in excellent agreement with reported values.
Resumo:
Purpose: To evaluate inter- and intraobserver variability of indices crucial for detection of keratoconus progression derived from the Pentacam HR® (high-resolution) tomographer (OCULUS Optikgeräte GmbH, Wetzlar, Germany) in patients with mild to moderate keratoconus. Methods: Three repeated corneal topography measurements in the 25-picture mode by two independent observers were performed. The extent of variability across a large range of measurement parameters was analyzed including anterior and posterior corneal surface measurements, pachymetry values, corneal volume, anterior chamber volume and depth, and iridocorneal angle. The intraclass correlation coefficient (ICC) between and within each investigator was calculated to assess reproducibility and repeatability, respectively. Results: 31 eyes of 20 patients (mean age 31.6, SD ± 8.6) were included. Overall, the repeatability and reproducibility were excellent. The range of variability was reported by calculating the standard deviation of measurements. The detailed results are shown in Table 1. Conclusions: This study shows that the Pentacam HR® tomographer provides reliable measurements in patients with mild to moderate keratoconus. However, all parameters showed a certain range of variability. This should be taken into account when assessing keratoconus progression in order to distinguish true progression from variability in measurements. In addition, the excellent reproducibility suggests that the measurements can be reliably performed by different individuals from one visit to another.