200 resultados para streptozotocin (STZ)-diabetic rat
Resumo:
This work was aimed at analyzing the effects of perinatal choline supplementation on the development of spatial abilities and upon adult performance. Choline supplementation (3.5 g/L in 0.02 M saccharin solution in tap water) was maintained for two weeks before birth and for up to four weeks postnatally. Additional supplementation was maintained from the fifth to the tenth week postnatally. Spatial-learning capacities were studied at the ages of 26, 65, or 80 days in a circular swimming pool (Morris place-navigation task) and at the age of 7 months in a homing arena. Treatment effects were found in both juvenile and adult rats, and thus persisted for several months after the cessation of the supplementation. The choline supplementation improved the performance in the water maze in a very selective manner. The most consistent effect was a reduction in the latency to reach a cued platform at a fixed position in space, whereas the improvement was limited when the platform was invisible and had to be located relative to distant cues only. However, after removal of the goal cue, the treated rats showed a better retention of the training position than did the control rats. A similar effect was observed in a dry-land task conducted in the homing arena. The choline supplementation thus induced a significant improvement of spatial memory. But since this effect was only evident following training with a salient cue, it might be regarded as an indirect effect promoted by an optimal combination of cue guidance with a place strategy.
Resumo:
PURPOSE: Silent myocardial ischaemia--as evaluated by stress-induced perfusion defects on myocardial perfusion scintigraphy (MPS) in patients without a history of chest pain--is frequent in diabetes and is associated with increased rates of cardiovascular events. Its prevalence has been determined in asymptomatic diabetic patients, but remains largely unknown in diabetic patients with suspected coronary artery disease (CAD) in the clinical setting. In this study we therefore sought (a) to determine the prevalence of symptomatic and silent perfusion defects in diabetic patients with suspected CAD and (b) to characterise the eventual predictors of abnormal perfusion. METHODS: The patient population comprised 133 consecutive diabetic patients with suspected CAD who had been referred for MPS. Studies were performed with exercise (41%) or pharmacological stress testing (1-day protocol, (99m)Tc-sestamibi, 201Tl or both). We used semi-quantitative analysis (20-segment polar maps) to derive the summed stress score (SSS) and the summed difference score (SDS). RESULTS: Abnormal MPS (SSS> or =4) was observed in 49 (37%) patients (SSS=4.9+/-8.4, SDS=2.4+/-4.7), reversible perfusion defects (SDS> or =2) in 40 (30%) patients [SSS=13.3+/-10.9; SDS=8.0+/-5.6; 20% moderate to severe (SDS>4), 7% multivessel] and fixed defects in 21 (16%) patients. Results were comparable between patients with and patients without a history of chest pain. Of 75 patients without a history of chest pain, 23 (31%, 95% CI=21-42%) presented reversible defects (SSS=13.9+/-11.3; SDS=7.4+/-1.2), indicative of silent ischaemia. Reversible defects were associated with inducible ST segment depression during MPS stress [odds ratio (OR)=3.2, p<0.01). Fixed defects were associated with erectile dysfunction in males (OR=3.7, p=0.02) and lower aspirin use (OR=0.25, p=0.02). CONCLUSION: Silent stress-induced perfusion defects occurred in 31% of the patients, a rate similar to that in patients with a history of chest pain. MPS could identify these patients with a potentially increased risk of cardiovascular events.
Resumo:
Keywords Diabetes mellitus; coronary artery disease; myocardial ischemia; prognostic value; single-photon emission computed tomography myocardial perfusion imaging Summary Aim: To determine the long-term prognostic value of SPECT myocardial perfusion imaging (MPI) for the occurrence of cardiovascular events in diabetic patients. Methods: SPECT MPI of 210 consecutive Caucasian diabetic patients were analysed using Kaplan-Meier event-free survival curves and independent predictors were determined by Cox multivariate analyses. Results: Follow-up was complete in 200 (95%) patients with a median period of 3.0 years (0.8-5.0). The population was composed of 114 (57%) men, age 65±10 years, 181 (90.5%) type 2 diabetes mellitus, 50 (25%) with a history of coronary artery disease (CAD) and 98 (49%) presenting chest pain prior to MPI. The prevalence of abnormal MPI was 58%. Patients with a normal MPI had neither cardiac death, nor myocardial infarction, independently of a history of coronary artery disease or chest pain. Among the independent predictors of cardiac death and myocardial infarction, the strongest was abnormal MPI (p<.0001), followed by history of CAD (Hazard Ratio (HR)= t 5.9, p=0.0001), diabetic retinopathy (HR=10.0, p=0.001) and inability to exercise (HR=7.7, p=0.02). Patients with normal 1VIPI had a low revascularisation rate of 2.4% during the follow-up period. Compared to normal MPI, cardiovascular events increased 5.2 fold for reversible defects, 8.5 fold for fixed defects and 20.1 fold for the association of both defects. Conclusion: Diabetic patients with normal MPI had an excellent prognosis independently of history of CAD. On the opposite, an abnormal MPI led to a > 5 fold increase in cardiovascular events. This emphasizes the value of SPECT MPI in predicting and risk-stratifying cardiovascular events in diabetic patients. Mots-Clés Diabète; maladie coronarienne; ischémie myocardique; valeur pronostique; tomoscintigraphie myocardique de perfusion par émission monophotonique Résumé Objectifs: Déterminer la valeur pronostique à long terme de la tomoscintigraphie myocardique de perfusion (TSMP) chez les patients diabétiques pour prédire les événements cardiovasculaires (ECV). Méthodes: Etude de 210 diabétiques caucasiens consécutifs référés pour une TSMP. Les courbes de survie ont été déterminées par Kaplan-Meier et les facteurs prédictifs indépendants par analyses multivariées de type Cox. Résultats: Le suivi a été complet chez 200 (95%) patients avec une durée médiane de 3.0 ans (0.8-50). La population était composée de 114 (57%) hommes, âge moyen 65±10 ans, avec 181 (90.5%) diabète de type 2, 50 (25%) antécédents de maladie coronarienne (AMC) et 98 (49%) patients connus pour un angor avant la TSMP. La prévalence de TSMP anormales était de 58%. Aucun décès d'origine cardiaque ou infarctus du myocarde n'est survenu chez les patients avec une TSMP normale, ceci indépendamment de leurs AMC et des douleurs thoraciques. Les facteurs prédictifs indépendants pour les ECV sont une TSMP anormale (p<.0001), les AMC (Hazard Ratio (HR)=15.9, p-0.0001), suivi de la rétinopathie diabétique (HR-10.0, p=0.001) et de l'incapacité à effectuer un exercice (HR=7.7, p=0.02). Les patients avec une TSMP normale ont présenté un taux de revascularisations de 2.4%. La présence de défauts mixtes accroît le risque d'ECV de 20.1 fois, les défauts fixes de 8.5 fois et les défauts réversibles de 5.2 fois comparés aux sujets avec une TSMP normale. Conclusion: Les patients diabétiques, coronariens ou non, avec une tomoscintigraphie myocardique de perfusion normale ont un excellent pronostique. A l'opposé, une TSMP anormale est associée à une augmentation du risque d'ECV de plus de 5 fois. Ceci confirme l'utilité de la TSMP dans la stratification du risque chez les patients diabétiques.
Resumo:
The cellular localisation of neurofilament triplet subunits was investigated in the rat neocortex. A subset of mainly pyramidal neurons showed colocalisation of subunit immunolabelling throughout the neocortex, including labelling with the antibody SMI32, which has been used extensively in other studies of the primate cortex as a selective cellular marker. Neurofilament-labelled neurons were principally localised to two or three cell layers in most cortical regions, but dramatically reduced labelling was present in areas such as the perirhinal cortex, anterior cingulate and a strip of cortex extending from caudal motor regions through the medial parietal region to secondary visual areas. However, quantitative analysis demonstrated a similar proportion (10-20%) of cells with neurofilament triplet labelling in regions of high or low labelling. Combining retrograde tracing with immunolabelling showed that cellular content of the neurofilament proteins was not correlated with the length of projection. Double labelling immunohistochemistry demonstrated that neurofilament content in axons was closely associated with myelination. Analysis of SMI32 labelling in development indicated that content of this epitope within cell bodies was associated with relatively late maturation, between postnatal days 14 and 21. This study is further evidence of a cell type-specific regulation of neurofilament proteins within neocortical neurons. Neurofilament triplet content may be more closely related to the degree of myelination, rather than the absolute length, of the projecting axon.
Resumo:
The change in energy expenditure consecutive to the infusion of glucose/insulin was examined in 17 non-obese (ten young, seven middle-aged) and 27 diabetic and non-diabetic obese subjects by employing the euglycemic insulin clamp technique in conjunction with continuous indirect calorimetry. The obese subjects were divided into four groups according to their response to a 100-g oral glucose test: group A, normal glucose tolerance; group B, impaired glucose tolerance; group C, diabetes with increased insulin response; group D, diabetes with reduced insulin response. The glucose/insulin infusion provoked an increase in energy expenditure in both young and middle-aged controls (+8.2 +/- 1.3 percent and +5.9 +/- 0.5 percent over the preinfusion baseline respectively), but a lower increase in the non-diabetic obese groups A and B (+4.0 +/- 0.7 percent and +2.0 +/- 1.0 percent over the preinfusion baseline respectively, P less than 0.05 and P less than 0.01 vs young controls). However, in the diabetic obese groups C and D, energy expenditure failed to increase in response to the glucose/insulin infusion (mean change: +0.1 +/- 1.0 percent and -2.0 +/- 1.9 percent (P less than 0.01, vs middle-aged) over the preinfusion baseline respectively). When the glucose-induced thermogenesis (GIT) was related to the glucose uptake--taking into account the hepatic glucose production--the GIT was found to be similarly reduced in the diabetics groups (C and D). The net change in the rate of energy expenditure was found to be significantly correlated with the rate of glucose uptake (r = +0.647, n = 44, P less than 0.001) when all the individuals were pooled. In conclusion, this study shows that the low glucose-induced thermogenesis in obese diabetics during glucose insulin infusion is mainly related to a reduced rate of glucose uptake; in addition, inhibition of gluconeogenesis by the glucose/insulin infusion may also contribute to decrease the thermogenic response.
Resumo:
PURPOSE: To evaluate whether anti-vascular endothelial growth factor (VEGF) neutralizing antibodies injected in the vitreous of rat eyes influence retinal microglia and macrophage activation. To dissociate the effect of anti-VEGF on microglia and macrophages subsequent to its antiangiogenic effect, we chose a model of acute intraocular inflammation. METHODS: Lewis rats were challenged with systemic lipopolysaccharide (LPS) injection and concomitantly received 5 µl of rat anti-VEGF-neutralizing antibody (1.5 mg/ml) in the vitreous. Rat immunoglobulin G (IgG) isotype was used as the control. The effect of anti-VEGF was evaluated at 24 and 48 h clinically (uveitis scores), biologically (cytokine multiplex analysis in ocular media), and histologically (inflammatory cell counts on eye sections). Microglia and macrophages were immunodetected with ionized calcium-binding adaptor molecule 1 (IBA1) staining and counted based on their differential shapes (round amoeboid or ramified dendritiform) on sections and flatmounted retinas using confocal imaging and automatic quantification. Activation of microglia was also evaluated with inducible nitric oxide synthase (iNOS) and IBA1 coimmunostaining. Coimmunolocalization of VEGF receptor 1 and 2 (VEGF-R1 and R2) with IBA1 was performed on eye sections with or without anti-VEGF treatment. RESULTS: Neutralizing rat anti-VEGF antibodies significantly decreased ocular VEGF levels but did not decrease the endotoxin-induced uveitis (EIU) clinical score or the number of infiltrating cells and cytokines in ocular media (interleukin [IL]-1β, IL-6, tumor necrosis factor [TNF]-α, and monocyte chemoattractant protein [MCP]-1). Eyes treated with anti-VEGF showed a significantly decreased number of activated microglia and macrophages in the retina and the choroid and decreased iNOS-positive microglia. IBA1-positive cells expressed VEGF-R1 and R2 in the inflamed retina. CONCLUSIONS: Microglia and macrophages expressed VEGF receptors, and intravitreous anti-VEGF influenced the microglia and macrophage activation state. Taking into account that anti-VEGF drugs are repeatedly injected in the vitreous of patients with retinal diseases, part of their effects could result from unsuspected modulation of the microglia activation state. This should be further studied in other ocular pathogenic conditions and human pathology.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon were examined by biochemical and immunocytochemical methods for their development-dependent expression of several cytoskeletal proteins, including the heavy- and medium-sized neurofilament subunits (H-NF and M-NF, respectively); brain spectrin; synapsin I; beta-tubulin; and the microtubule-associated proteins (MAPs) 1, 2, and 5 and tau protein. It was found that with time in culture the levels of most of these cytoskeletal proteins increased greatly, with the exceptions of the particular beta-tubulin form studied, which remained unchanged, and MAP 5, which greatly decreased. Among the neurofilament proteins, expression of M-NF preceded that of H-NF, with the latter being detectable only after approximately 3 weeks in culture. Furthermore, MAP 2 and tau protein showed a development-dependent change in expression from the juvenile toward the adult form. The comparison of these developmental changes in cytoskeletal protein levels with those observed in rat brain tissue revealed that protein expression in aggregate cultures is nearly identical to that in vivo during maturation of the neuronal cytoskeleton. Aggregate cultures deprived of glial cells, i.e., neuron-enriched cultures prepared by treating early cultures with the antimitotic drug cytosine arabinoside, exhibited pronounced deficits in M-NF, H-NF, MAP 2, MAP 1, synapsin I, and brain spectrin, with increased levels of a 145-kDa brain spectrin breakdown product. These adverse effects of glial cell deprivation could be reversed by the maintenance of neuron-enriched cultures at elevated concentrations of KCl (30 mM). This chronic treatment had to be started at an early developmental stage to be effective, a finding suggesting that sustained depolarization by KCl is able to enhance the developmental expression and maturation of the neuronal cytoskeleton.
Resumo:
The rat adrenal gland contains ganglion cells able to synthesize nitric oxide (NO). This messenger molecule controls and modulates adrenal secretory activity and blood flow. The present study analyzed the number, size, and distribution of NO-producing adrenal neurons in adulthood and during postnatal development by means of beta-nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry. This method reliably visualizes the enzyme responsible for NO generation. The reactive neurons per adrenal gland were 350-400 in both male and female adult rats. The positive nerve cell bodies were mostly located in the medulla, few being detected within the cortex and the subcapsular region. Dual labeling with anti-microtubule-associated protein 2 antibody, specific for neuronal elements, confirmed this distribution. Anti-microtubule-associated protein 1b antibody identified a subset of NADPH-d-positive neurons, displaying different degrees of maturation according to their position within the adrenal gland. At birth, there were about 220 NADPH-d-labeled neurons per adrenal gland in both sexes. As confirmed by dual immunocytochemical labeling, their great majority was evenly distributed between the cortex and the subcapsular region, the medulla being practically devoid of stained neurons. After birth, the number of adrenal NADPH-d-positive ganglion cells displayed a strong postnatal increase and reached the adult-like distribution after 1-2 months. During the period of increase, there was a transient difference in the numbers of these cells in the two sexes. Thus we present here evidence of plasticity in the number, size, and distribution of NADPH-d-positive adrenal neurons between birth and adulthood; in addition, we describe transient sex-related differences in their number and distribution during the 2nd postnatal week, which are possibly related to the epigenetic action of gonadal hormones during this period.
Resumo:
AIMS/HYPOTHESIS: Pro-atherogenic and pro-oxidant, oxidised LDL trigger adverse effects on pancreatic beta cells, possibly contributing to diabetes progression. Because oxidised LDL diminish the expression of genes regulated by the inducible cAMP early repressor (ICER), we investigated the involvement of this transcription factor and of oxidative stress in beta cell failure elicited by oxidised LDL. METHODS: Isolated human and rat islets, and insulin-secreting cells were cultured with human native or oxidised LDL or with hydrogen peroxide. The expression of genes was determined by quantitative real-time PCR and western blotting. Insulin secretion was monitored by EIA kit. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Exposure of beta cell lines and islets to oxidised LDL, but not to native LDL raised the abundance of ICER. Induction of this repressor by the modified LDL compromised the expression of important beta cell genes, including insulin and anti-apoptotic islet brain 1, as well as of genes coding for key components of the secretory machinery. This led to hampering of insulin production and secretion, and of cell survival. Silencing of this transcription factor by RNA interference restored the expression of its target genes and alleviated beta cell dysfunction and death triggered by oxidised LDL. Induction of ICER was stimulated by oxidative stress, whereas antioxidant treatment with N-acetylcysteine or HDL prevented the rise of ICER elicited by oxidised LDL and restored beta cell functions. CONCLUSIONS/INTERPRETATION: Induction of ICER links oxidative stress to beta cell failure caused by oxidised LDL and can be effectively abrogated by antioxidant treatment.
Resumo:
This study was conducted to identify enzyme systems eventually catalysing a local cerebral metabolism of citalopram, a widely used antidepressant of the selective serotonin reuptake inhibitor type. The metabolism of citalopram, of its enantiomers and demethylated metabolites was investigated in rat brain microsomes and in rat and human brain mitochondria. No cytochrome P-450 mediated transformation was observed in rat brain. By analysing H2O2 formation, monoamine oxidase A activity in rat brain mitochondria could be measured. In rat whole brain and in human frontal cortex, putamen, cerebellum and white matter of five brains monoamine oxidase activity was determined by the stereoselective measurement of the production of citalopram propionate. All substrates were metabolised by both forms of MAO, except in rat brain, where monoamine oxidase B activity could not be detected. Apparent Km and Vmax of S-citalopram biotransformation in human frontal cortex by monoamine oxidase B were found to be 266 microM and 6.0 pmol min(-1) mg(-1) protein and by monoamine oxidase A 856 microM and 6.4 pmol min(-1) mg(-1) protein, respectively. These Km values are in the same range as those for serotonin and dopamine metabolism by monoamine oxidases. Thus, the biotransformation of citalopram in the rat and human brain occurs mainly through monoamine oxidases and not, as in the liver, through cytochrome P-450.
Resumo:
Extremely preterm infants commonly show brain injury with long-term structural and functional consequences. Three-day-old (P3) rat pups share some similarities in terms of cerebral development with the very preterm infant (born at 24-28 weeks of gestation). The aim of this study was to assess longitudinally the cerebral structural and metabolic changes resulting from a moderate neonatal hypoxic ischemic injury in the P3 rat pup using high-field (9.4 T) MRI and localized (1) H magnetic resonance spectroscopy techniques. The rats were scanned longitudinally at P3, P4, P11, and P25. Volumetric measurements showed that the percentage of cortical loss in the long term correlated with size of damage 6 h after hypoxia-ischemia, male pups being more affected than female. The neurochemical profiles revealed an acute decrease of most of metabolite concentrations and an increase in lactate 24 h after hypoxia-ischemia, followed by a recovery phase leading to minor metabolic changes at P25 in spite of an abnormal brain development. Further, the increase of lactate concentration at P4 correlated with the cortical loss at P25, giving insight into the early prediction of long-term cerebral alterations following a moderate hypoxia-ischemia insult that could be of interest in clinical practice.
Resumo:
To study inflammatory reactions occurring in relation to demyelination, aggregating rat brain cell cultures were subjected to three different demyelinating insults, i.e., (i) lysophosphatidylcholine (LPC), (ii) interferon-gamma combined with lipopolysaccharide (IFN-gamma+LPS), and (iii) anti-MOG antibodies plus complement (alpha-MOG+C). Demyelination was assessed by measuring the expression of myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG), and the activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP). The accompanying inflammatory reactions were examined by the quantification of microglia-specific staining, by immunostaining for glial fibrillary acidic protein (GFAP), and by measuring the mRNA expression of a panel of inflammation-related genes. It was found that all three demyelinating insults decreased the expression of MBP and MOG, and induced microglial reactivity. LPC and alpha-MOG+C, but not IFN-gamma+LPS, decreased CNP activity; they also caused the appearance of macrophagic microglia, and increased GFAP staining indicating astrogliosis. LPC affected also the integrity of neurons and astrocytes. LPC and IFN-gamma+LPS upregulated the expression of the inflammation-related genes IL-6, TNF-alpha, Ccl5, Cxcl1, and iNOS, although to different degrees. Other inflammatory markers were upregulated by only one of the three insults, e.g., Cxcl2 by LPC; IL-1beta and IL-15 by IFN-gamma+LPS; and IFN-gamma by alpha-MOG+C. These findings indicate that each of the three demyelinating insults caused distinct patterns of demyelination and inflammatory reactivity, and that of the demyelinating agents tested only LPC exhibited general toxicity.