175 resultados para spatial clustering algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial data on species distributions are available in two main forms, point locations and distribution maps (polygon ranges and grids). The first are often temporally and spatially biased, and too discontinuous, to be useful (untransformed) in spatial analyses. A variety of modelling approaches are used to transform point locations into maps. We discuss the attributes that point location data and distribution maps must satisfy in order to be useful in conservation planning. We recommend that before point location data are used to produce and/or evaluate distribution models, the dataset should be assessed under a set of criteria, including sample size, age of data, environmental/geographical coverage, independence, accuracy, time relevance and (often forgotten) representation of areas of permanent and natural presence of the species. Distribution maps must satisfy additional attributes if used for conservation analyses and strategies, including minimizing commission and omission errors, credibility of the source/assessors and availability for public screening. We review currently available databases for mammals globally and show that they are highly variable in complying with these attributes. The heterogeneity and weakness of spatial data seriously constrain their utility to global and also sub-global scale conservation analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Question Does a land-use variable improve spatial predictions of plant species presence-absence and abundance models at the regional scale in a mountain landscape? Location Western Swiss Alps. Methods Presence-absence generalized linear models (GLM) and abundance ordinal logistic regression models (LRM) were fitted to data on 78 mountain plant species, with topo-climatic and/or land-use variables available at a 25-m resolution. The additional contribution of land use when added to topo-climatic models was evaluated by: (1) assessing the changes in model fit and (2) predictive power, (3) partitioning the deviance respectively explained by the topo-climatic variables and the land-use variable through variation partitioning, and (5) comparing spatial projections. Results Land use significantly improved the fit of presence-absence models but not their predictive power. In contrast, land use significantly improved both the fit and predictive power of abundance models. Variation partitioning also showed that the individual contribution of land use to the deviance explained by presence-absence models was, on average, weak for both GLM and LRM (3.7% and 4.5%, respectively), but changes in spatial projections could nevertheless be important for some species. Conclusions In this mountain area and at our regional scale, land use is important for predicting abundance, but not presence-absence. The importance of adding land-use information depends on the species considered. Even without a marked effect on model fit and predictive performance, adding land use can affect spatial projections of both presence-absence and abundance models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: This study assessed clustering of multiple risk behaviors (i.e., low leisure-time physical activity, low fruits/vegetables intake, and high alcohol consumption) with level of cigarette consumption. METHODS: Data from the 2002 Swiss Health Survey, a population-based cross-sectional telephone survey assessing health and self-reported risk behaviors, were used. 18,005 subjects (8052 men and 9953 women) aged 25 years old or more participated. RESULTS: Smokers more frequently had low leisure time physical activity, low fruits/vegetables intake, and high alcohol consumption than non- and ex-smokers. Frequency of each risk behavior increased steadily with cigarette consumption. Clustering of risk behaviors increased with cigarette consumption in both men and women. For men, the odds ratios of multiple (> or =2) risk behaviors other than smoking, adjusted for age, nationality, and educational level, were 1.14 (95% confidence interval: 0.97, 1.33) for ex-smokers, 1.24 (0.93, 1.64) for light smokers (1-9 cigarettes/day), 1.72 (1.36, 2.17) for moderate smokers (10-19 cigarettes/day), and 3.07 (2.59, 3.64) for heavy smokers (> or =20 cigarettes/day) versus non-smokers. Similar odds ratios were found for women for corresponding groups, i.e., 1.01 (0.86, 1.19), 1.26 (1.00, 1.58), 1.62 (1.33, 1.98), and 2.75 (2.30, 3.29). CONCLUSIONS: Counseling and intervention with smokers should take into account the strong clustering of risk behaviors with level of cigarette consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part of this research, three stages were stated for a program to increase the information extracted from ink evidence and maximise its usefulness to the criminal and civil justice system. These stages are (a) develop a standard methodology for analysing ink samples by high-performance thin layer chromatography (HPTLC) in reproducible way, when ink samples are analysed at different time, locations and by different examiners; (b) compare automatically and objectively ink samples; and (c) define and evaluate theoretical framework for the use of ink evidence in forensic context. This report focuses on the second of the three stages. Using the calibration and acquisition process described in the previous report, mathematical algorithms are proposed to automatically and objectively compare ink samples. The performances of these algorithms are systematically studied for various chemical and forensic conditions using standard performance tests commonly used in biometrics studies. The results show that different algorithms are best suited for different tasks. Finally, this report demonstrates how modern analytical and computer technology can be used in the field of ink examination and how tools developed and successfully applied in other fields of forensic science can help maximising its impact within the field of questioned documents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2009-2010 Data Fusion Contest organized by the Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society was focused on the detection of flooded areas using multi-temporal and multi-modal images. Both high spatial resolution optical and synthetic aperture radar data were provided. The goal was not only to identify the best algorithms (in terms of accuracy), but also to investigate the further improvement derived from decision fusion. This paper presents the four awarded algorithms and the conclusions of the contest, investigating both supervised and unsupervised methods and the use of multi-modal data for flood detection. Interestingly, a simple unsupervised change detection method provided similar accuracy as supervised approaches, and a digital elevation model-based predictive method yielded a comparable projected change detection map without using post-event data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Body mass index (BMI) may cluster in space among adults and be spatially dependent. Whether BMI clusters among children and how age-specific BMI clusters are related remains unknown. We aimed to identify and compare the spatial dependence of BMI in adults and children in a Swiss general population, taking into account the area's income level. METHODS: Geo-referenced data from the Bus Santé study (adults, n=6663) and Geneva School Health Service (children, n=3601) were used. We implemented global (Moran's I) and local (local indicators of spatial association (LISA)) indices of spatial autocorrelation to investigate the spatial dependence of BMI in adults (35-74 years) and children (6-7 years). Weight and height were measured using standardized procedures. Five spatial autocorrelation classes (LISA clusters) were defined including the high-high BMI class (high BMI participant's BMI value correlated with high BMI-neighbors' mean BMI values). The spatial distributions of clusters were compared between adults and children with and without adjustment for area's income level. RESULTS: In both adults and children, BMI was clearly not distributed at random across the State of Geneva. Both adults' and children's BMIs were associated with the mean BMI of their neighborhood. We found that the clusters of higher BMI in adults and children are located in close, yet different, areas of the state. Significant clusters of high versus low BMIs were clearly identified in both adults and children. Area's income level was associated with children's BMI clusters. CONCLUSIONS: BMI clusters show a specific spatial dependence in adults and children from the general population. Using a fine-scale spatial analytic approach, we identified life course-specific clusters that could guide tailored interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An adaptation technique based on the synoptic atmospheric circulation to forecast local precipitation, namely the analogue method, has been implemented for the western Swiss Alps. During the calibration procedure, relevance maps were established for the geopotential height data. These maps highlight the locations were the synoptic circulation was found of interest for the precipitation forecasting at two rain gauge stations (Binn and Les Marécottes) that are located both in the alpine Rhône catchment, at a distance of about 100 km from each other. These two stations are sensitive to different atmospheric circulations. We have observed that the most relevant data for the analogue method can be found where specific atmospheric circulation patterns appear concomitantly with heavy precipitation events. Those skilled regions are coherent with the atmospheric flows illustrated, for example, by means of the back trajectories of air masses. Indeed, the circulation recurrently diverges from the climatology during days with strong precipitation on the southern part of the alpine Rhône catchment. We have found that for over 152 days with precipitation amount above 50 mm at the Binn station, only 3 did not show a trajectory of a southerly flow, meaning that such a circulation was present for 98% of the events. Time evolution of the relevance maps confirms that the atmospheric circulation variables have significantly better forecasting skills close to the precipitation period, and that it seems pointless for the analogue method to consider circulation information days before a precipitation event as a primary predictor. Even though the occurrence of some critical circulation patterns leading to heavy precipitation events can be detected by precursors at remote locations and 1 week ahead (Grazzini, 2007; Martius et al., 2008), time extrapolation by the analogue method seems to be rather poor. This would suggest, in accordance with previous studies (Obled et al., 2002; Bontron and Obled, 2005), that time extrapolation should be done by the Global Circulation Model, which can process atmospheric variables that can be used by the adaptation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different spatial representations are not stored as a single multipurpose map in the brain. Right brain-damaged patients can show a distortion, a compression of peripersonal and extrapersonal space. Here we report the case of a patient with a right insulo-thalamic disconnection without spatial neglect. The patient, compared with 10 healthy control subjects, showed a constant and reliable increase of her peripersonal and extrapersonal egocentric space representations - that we named spatial hyperschematia - yet left her allocentric space representations intact. This striking dissociation shows that our interactions with the surrounding world are represented and processed modularly in the human brain, depending on their frame of reference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel filtering method for multispectral satellite image classification. The proposed method learns a set of spatial filters that maximize class separability of binary support vector machine (SVM) through a gradient descent approach. Regularization issues are discussed in detail and a Frobenius-norm regularization is proposed to efficiently exclude uninformative filters coefficients. Experiments carried out on multiclass one-against-all classification and target detection show the capabilities of the learned spatial filters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scenario considered here is one where brain connectivity is represented as a network and an experimenter wishes to assess the evidence for an experimental effect at each of the typically thousands of connections comprising the network. To do this, a univariate model is independently fitted to each connection. It would be unwise to declare significance based on an uncorrected threshold of α=0.05, since the expected number of false positives for a network comprising N=90 nodes and N(N-1)/2=4005 connections would be 200. Control of Type I errors over all connections is therefore necessary. The network-based statistic (NBS) and spatial pairwise clustering (SPC) are two distinct methods that have been used to control family-wise errors when assessing the evidence for an experimental effect with mass univariate testing. The basic principle of the NBS and SPC is the same as supra-threshold voxel clustering. Unlike voxel clustering, where the definition of a voxel cluster is unambiguous, 'clusters' formed among supra-threshold connections can be defined in different ways. The NBS defines clusters using the graph theoretical concept of connected components. SPC on the other hand uses a more stringent pairwise clustering concept. The purpose of this article is to compare the pros and cons of the NBS and SPC, provide some guidelines on their practical use and demonstrate their utility using a case study involving neuroimaging data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salmonid populations of many rivers are rapidly declining. One possible explanation is that habitat fragmentation increases genetic drift and reduces the populations' potential to adapt to changing environmental conditions. We measured the genetic and eco-morphological diversity of brown trout (Salmo trutta) in a Swiss stream system, using multivariate statistics and Bayesian clustering. We found large genetic and phenotypic variation within only 40 km of stream length. Eighty-eight percent of all pairwise F(ST) comparisons and 50% of the population comparisons in body shape were significant. High success rates of population assignment tests confirmed the distinctiveness of populations in both genotype and phenotype. Spatial analysis revealed that divergence increased with waterway distance, the number of weirs, and stretches of poor habitat between sampling locations, but effects of isolation-by-distance and habitat fragmentation could not be fully disentangled. Stocking intensity varied between streams but did not appear to erode genetic diversity within populations. A lack of association between phenotypic and genetic divergence points to a role of local adaptation or phenotypically plastic responses to habitat heterogeneity. Indeed, body shape could be largely explained by topographic stream slope, and variation in overall phenotype matched the flow regimes of the respective habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: To cluster textual sequence types (discourse types/modes) in French texts, K-means algorithm with high-dimensional embeddings and fuzzy clustering algorithm were applied on clauses whose POS (part-ofspeech) n-gram profiles were previously extracted. Uni-, bi- and trigrams were used on four 19th century French short stories by Maupassant. For high-dimensional embeddings, power transformations on the chi-squared distances between clauses were explored. Preliminary results show that highdimensional embeddings improve the quality of clustering, contrasting the use of bi and trigrams whose performance is disappointing, possibly because of feature space sparsity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Left unilateral spatial neglect resulting from right brain damage is characterized by loss of awareness for stimuli in the contralesional side of space, despite intact visual pathways. We examined using fMRI whether patients with neglect are more likely to consciously detect in the neglected hemifield, emotionally negative complex scenes rather than visually similar neutral pictures and if so, what neural mechanisms mediate this effect. Photographs of emotional and neutral scenes taken from the IAPS were presented in a divided visual field paradigm. As expected, the detection rate for emotional stimuli presented in the neglected field was higher than for neutral ones. Successful detection of emotional scenes as opposed to neutral stimuli in the left visual field (LVF) produced activations in the parahippocampal and anterior cingulate areas in the right hemisphere. Detection of emotional stimuli presented in the intact right visual field (RVF) activated a distributed network of structures in the left hemisphere, including anterior and posterior cingulate cortex, insula, as well as visual striate and extrastriate areas. LVF-RVF contrasts for emotional stimuli revealed activations in right and left attention related prefrontal areas whereas RVF-LVF comparison showed activations in the posterior cingulate and extrastriate visual cortex in the left hemisphere. An additional analysis contrasting detected vs. undetected emotional LVF stimuli showed involvement of left anterior cingulate, right frontal and extrastriate areas. We hypothesize that beneficial role of emotion in overcoming neglect is achieved by activation of frontal and limbic lobe networks, which provide a privileged access of emotional stimuli to attention by top-down modulation of processing in the higher-order extrastriate visual areas. Our results point to the importance of top-down regulatory role of the frontal attentional systems, which might enhance visual activations and lead to greater salience of emotional stimuli for perceptual awareness.