115 resultados para soleus muscles
Resumo:
PURPOSE: This study investigated the isolated and combined effects of heat [temperate (22 °C/30 % rH) vs. hot (35 °C/40 % rH)] and hypoxia [sea level (FiO2 0.21) vs. moderate altitude (FiO2 0.15)] on exercise capacity and neuromuscular fatigue characteristics. METHODS: Eleven physically active subjects cycled to exhaustion at constant workload (66 % of the power output associated with their maximal oxygen uptake in temperate conditions) in four different environmental conditions [temperate/sea level (control), hot/sea level (hot), temperate/moderate altitude (hypoxia) and hot/moderate altitude (hot + hypoxia)]. Torque and electromyography (EMG) responses following electrical stimulation of the tibial nerve (plantar-flexion; soleus) were recorded before and 5 min after exercise. RESULTS: Time to exhaustion was reduced (P < 0.05) in hot (-35 ± 15 %) or hypoxia (-36 ± 14 %) compared to control (61 ± 28 min), while hot + hypoxia (-51 ± 20 %) further compromised exercise capacity (P < 0.05). However, the effect of temperature or altitude on end-exercise core temperature (P = 0.089 and P = 0.070, respectively) and rating of perceived exertion (P > 0.05) did not reach significance. Maximal voluntary contraction torque, voluntary activation (twitch interpolation) and peak twitch torque decreased from pre- to post-exercise (-9 ± 1, -4 ± 1 and -6 ± 1 % all trials compounded, respectively; P < 0.05), with no effect of the temperature or altitude. M-wave amplitude and root mean square activity were reduced (P < 0.05) in hot compared to temperate conditions, while normalized maximal EMG activity did not change. Altitude had no effect on any measured parameters. CONCLUSION: Moderate hypoxia in combination with heat stress reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Impaired oxygen delivery or increased cardiovascular strain, increasing relative exercise intensity, may have also contributed to earlier exercise cessation.
Resumo:
Euglycemic hyperinsulinemia stimulates both sympathetic nerve activity and blood flow to skeletal muscle, but the mechanism is unknown. Possible mechanisms that may stimulate muscle blood flow include neural, humoral, or metabolic effects of insulin. To determine whether such insulin-induced vasodilation is modulated by stimulation of adrenergic or cholinergic mechanisms, we obtained, in eight healthy lean subjects, plethysmographic measurements of calf blood flow during 3 h of hyperinsulinemic (1 mU.kg-1.min-1) euglycemic clamp performed alone or during concomitant beta-adrenergic (propranolol infusion), cholinergic (atropine infusion), or alpha-adrenergic (prazosin administration) blockade. Euglycemic hyperinsulinemia alone increased calf blood flow by 38 +/- 10% (means +/- SE) and decreased vascular resistance by 27 +/- 4% (P < 0.01). The principal new observation is that these insulin-induced vasodilatory responses were not attenuated by concomitant propranolol or atropine infusion, nor were they potentiated by prazosin administration. In conclusion, these findings provide evidence that during euglycemic hyperinsulinemia in lean healthy humans stimulation of muscle blood flow is not mediated primarily by beta-adrenergic or cholinergic mechanisms. Furthermore, alpha-adrenergic mechanisms do not markedly limit insulin-induced stimulation of muscle blood flow.
Resumo:
Primary monogenic forms of dystonia manifest solely or mainly with dystonia; they have been linked to a number of genes and loci and assigned "DYT" numbers. The pure dystonia syndrome early-onset primary dystonia (DYT1) manifests with dominantly-inherited generalized dystonia, often with focal onset in a limb. DYT1 is caused by a GAG deletion in the TOR1A gene. Mutations in the THAP1 gene cause DYT6, a form of pure dystonia that primarily involves cranio-cervical and upper limb muscles. Patients with the dystonia plus syndrome DYT5 display levodopa-responsive dystonia sometimes associated with tremor or parkinsonism (DYT5a, mutations in GCH1); a more severe phenotype with psychomotor involvement can be seen in recessive forms (DYT5b with TH mutations, SPR-deficiency syndrome). Other forms of dystonia plus syndromes include myoclonic dystonia (DYT11) and rapid-onset dystonia-parkinsonism (DYT12). Finally, paroxysmal exertion-induced dystonia (DYT18, GLUT1 deficiency) is caused by mutations in the SLC2A1 gene (DYT9 and DYT18). It is part of the paroxysmal dystonia group and manifests with paroxystic movements sometimes associated with seizures and psychomotor developmental delay.
Resumo:
PURPOSE: To report the clinical and genetic study of two families of Egyptian origin with clinical anophthalmia. To further determine the role of the retina and anterior neural fold homeobox gene (RAX) in anophthalmia and associated cerebral malformations. METHODS: Three patients with clinical anophthalmia and first-degree relatives from two consanguineous families of Egyptian origin underwent full ophthalmologic, general and neurologic examination, and blood tests. Cerebral magnetic resonance imaging (MRI) was performed in the index cases of both families. Genomic DNA was prepared from venous leukocytes, and direct sequencing of all the exons and intron-exon junctions of RAX was performed after PCR amplification. RESULTS: Clinical bilateral anophthalmia was observed in all three patients. General and neurologic examinations were normal; obesity and delay in psychomotor development were observed in the isolated case. Orbital MRI showed a hypoplastic orbit with present but rudimentary extraocular muscles and normal lacrimal glands. Cerebral MRI showed agenesis of the optic nerves, optic tracts, and optic chiasma. In the index case of family A, the absence of the frontal and sphenoidal sinuses was also noted. In the index case of family B, only the sphenoidal sinus was absent, and there was significant cortical atrophy. The three patients carried a novel homozygous c.543+3A>G mutation (IVS2+3A>G) in RAX. Parents were healthy heterozygous carriers. No mutations were detected in orthodenticle homeobox 2 (OTX2), ventral anterior homeobox 1 (VAX1), or sex determining region Y-box 2 (SOX2). CONCLUSIONS: This is the first report of a homozygous splicing RAX mutation associated with autosomal recessive bilateral anophthalmia. To our knowledge, only two isolated cases of anophthalmia, three null and one missense case affecting nuclear localization or the DNA-binding homeodomain, have been found to be caused by compound heterozygote RAX mutations. A novel missense RAX mutation was identified in three patients with bilateral anophthalmia and a distinct systemic and neurologic phenotype. The mutation potentially affects splicing of the last exon and is thought to result in a protein that has an aberrant homeodomain and no paired-tail domain. Functional consequences of this change still need to be characterized.
Resumo:
BACKGROUND: Diplopia related to neurosurgical procedures is often consecutive to oculomotor nerve lesions. We hereby report an oculomotor dysfunction secondary to an orbital roof effraction and its treatment. HISTORY AND SIGNS: Following surgery for a left anterior communicating artery aneurysm, a 45-year-old woman reported vertical diplopia associated with a left orbital hematoma. The diagnosis of third cranial nerve palsy was excluded by orbital imaging which revealed an orbital roof defect with incarceration of the levator palpebrae and superior rectus. THERAPY AND OUTCOME: As neurosurgeons advised against muscle adhesiolysis, diplopia was corrected by a two-step procedure on the oculomotor muscles. We first corrected horizontal and torsional deviations by operating on the healthy eye, before correcting the vertical deviation on the fellow eye. This two-step extraocular muscle surgery allowed restoration of binocular single vision in a useful field of gaze. CONCLUSIONS: Diplopia can occur as a rare orbital complication during neurosurgical procedures. Surgery of extraocular muscles can provide good functional results
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
The aim of this study was to examine the magnitude and the origin of neuromuscular fatigue induced by half-squat static whole-body vibration (WBV) exercise, and to compare it to a non-WBV condition. Nine healthy volunteers completed two fatiguing protocols (WBV and non-WBV, randomly presented) consisting of five 1-min bouts of static half-squat exercise with a load corresponding to 50 % of their individual body mass. Neuromuscular fatigue of knee and ankle muscles was investigated before and immediately after each fatiguing protocol. The main outcomes were maximal voluntary contraction (MVC) torque, voluntary activation, and doublet peak torque. Knee extensor MVC torque decreased significantly (P < 0.01) and to the same extent after WBV (-23 %) and non-WBV (-25 %), while knee flexor, plantar flexor, and dorsiflexor MVC torque was not affected by the treatments. Voluntary activation of knee extensor and plantar flexor muscles was unaffected by the two fatiguing protocols. Doublet peak torque decreased significantly and to a similar extent following WBV and non-WBV exercise, for both knee extensors (-25 %; P < 0.01) and plantar flexors (-7 %; P < 0.05). WBV exercise with additional load did not accentuate fatigue and did not change its causative factors compared to non-WBV half-squat resistive exercise in recreationally active subjects.
Resumo:
Increased intracranial pressure may produce a variety of clinical manifestations, some common and others rare. We present a patient with idiopathic intracranial hypertension whose initial symptom was hemifacial spasm. All signs and symptoms of intracranial hypertension resolved with acetazolamide.
Resumo:
Mitochondria have a fundamental role in the transduction of energy from food into ATP. The coupling between food oxidation and ATP production is never perfect, but may nevertheless be of evolutionary significance. The 'uncoupling to survive' hypothesis suggests that 'mild' mitochondrial uncoupling evolved as a protective mechanism against the excessive production of damaging reactive oxygen species (ROS). Because resource allocation and ROS production are thought to shape animal life histories, alternative life-history trajectories might be driven by individual variation in the degree of mitochondrial uncoupling. We tested this hypothesis in a small bird species, the zebra finch (Taeniopygia guttata), by treating adults with the artificial mitochondrial uncoupler 2,4-dinitrophenol (DNP) over a 32-month period. In agreement with our expectations, the uncoupling treatment increased metabolic rate. However, we found no evidence that treated birds enjoyed lower oxidative stress levels or greater survival rates, in contrast to previous results in other taxa. In vitro experiments revealed lower sensitivity of ROS production to DNP in mitochondria isolated from skeletal muscles of zebra finch than mouse. In addition, we found significant reductions in the number of eggs laid and in the inflammatory immune response in treated birds. Altogether, our data suggest that the 'uncoupling to survive' hypothesis may not be applicable for zebra finches, presumably because of lower effects of mitochondrial uncoupling on mitochondrial ROS production in birds than in mammals. Nevertheless, mitochondrial uncoupling appeared to be a potential life-history regulator of traits such as fecundity and immunity at adulthood, even with food supplied ad libitum.
Resumo:
Calbindin D-28K is a calcium-binding protein which is expressed by subpopulations of dorsal root ganglion cells cultured from 10-day-old (E10) chick embryos. After 7 or 10 days of culture, more than 20% of the ganglion cells are immunostained by an anticalbindin-antiserum; however, after 14 days of culture, the proportion drops to 10%. This fall can be prevented by addition of muscle extract to cultures at 10 days. Thus the transitory expression of calbindin-immunoreactivity by responsive sensory neurons would be not only induced but also maintained by a differentiation factor of muscular origin.