114 resultados para probability models
Resumo:
Cloud computing and its three facets (Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS)) are terms that denote new developments in the software industry. In particular, PaaS solutions, also referred to as cloud platforms, are changing the way software is being produced, distributed, consumed, and priced. Software vendors have started considering cloud platforms as a strategic option but are battling to redefine their offerings to embrace PaaS. In contrast to SaaS and IaaS, PaaS allows for value co-creation with partners to develop complementary components and applications. It thus requires multisided business models that bring together two or more distinct customer segments. Understanding how to design PaaS business models to establish a flourishing ecosystem is crucial for software vendors. This doctoral thesis aims to address this issue in three interrelated research parts. First, based on case study research, the thesis provides a deeper understanding of current PaaS business models and their evolution. Second, it analyses and simulates consumers' preferences regarding PaaS business models, using a conjoint approach to find out what determines the choice of cloud platforms. Finally, building on the previous research outcomes, the third part introduces a design theory for the emerging class of PaaS business models, which is grounded on an extensive action design research study with a large European software vendor. Understanding PaaS business models from a market as well as a consumer perspective will, together with the design theory, inform and guide decision makers in their business model innovation plans. It also closes gaps in the research related to PaaS business model design and more generally related to platform business models.
Resumo:
Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity and solution space, thus making it easier to investigate.
Resumo:
Functional divergence between homologous proteins is expected to affect amino acid sequences in two main ways, which can be considered as proxies of biochemical divergence: a "covarion-like" pattern of correlated changes in evolutionary rates, and switches in conserved residues ("conserved but different"). Although these patterns have been used in case studies, a large-scale analysis is needed to estimate their frequency and distribution. We use a phylogenomic framework of animal genes to answer three questions: 1) What is the prevalence of such patterns? 2) Can we link such patterns at the amino acid level with selection inferred at the codon level? 3) Are patterns different between paralogs and orthologs? We find that covarion-like patterns are more frequently detected than "constant but different," but that only the latter are correlated with signal for positive selection. Finally, there is no obvious difference in patterns between orthologs and paralogs.
Resumo:
Gene expression data from microarrays are being applied to predict preclinical and clinical endpoints, but the reliability of these predictions has not been established. In the MAQC-II project, 36 independent teams analyzed six microarray data sets to generate predictive models for classifying a sample with respect to one of 13 endpoints indicative of lung or liver toxicity in rodents, or of breast cancer, multiple myeloma or neuroblastoma in humans. In total, >30,000 models were built using many combinations of analytical methods. The teams generated predictive models without knowing the biological meaning of some of the endpoints and, to mimic clinical reality, tested the models on data that had not been used for training. We found that model performance depended largely on the endpoint and team proficiency and that different approaches generated models of similar performance. The conclusions and recommendations from MAQC-II should be useful for regulatory agencies, study committees and independent investigators that evaluate methods for global gene expression analysis.
Resumo:
The objective of the EU funded integrated project "ACuteTox" is to develop a strategy in which general cytotoxicity, together with organ-specific endpoints and biokinetic features, are taken into consideration in the in vitro prediction of oral acute systemic toxicity. With regard to the nervous system, the effects of 23 reference chemicals were tested with approximately 50 endpoints, using a neuronal cell line, primary neuronal cell cultures, brain slices and aggregated brain cell cultures. Comparison of the in vitro neurotoxicity data with general cytotoxicity data generated in a non-neuronal cell line and with in vivo data such as acute human lethal blood concentration, revealed that GABA(A) receptor function, acetylcholine esterase activity, cell membrane potential, glucose uptake, total RNA expression and altered gene expression of NF-H, GFAP, MBP, HSP32 and caspase-3 were the best endpoints to use for further testing with 36 additional chemicals. The results of the second analysis showed that no single neuronal endpoint could give a perfect improvement in the in vitro-in vivo correlation, indicating that several specific endpoints need to be analysed and combined with biokinetic data to obtain the best correlation with in vivo acute toxicity.
Resumo:
Background: Although combination antiretroviral therapy (cART) dramatically reduces rates of AIDS and death, a minority of patients experience clinical disease progression during treatment. <p>Objective: To investigate whether detection of CXCR4(X4)-specific strains or quantification of X4-specific HIV-1 load predict clinical outcome. Methods: From the Swiss HIV Cohort Study, 96 participants who initiated cART yet subsequently progressed to AIDS or death were compared with 84 contemporaneous, treated nonprogressors. A sensitive heteroduplex tracking assay was developed to quantify plasma X4 and CCR5 variants and resolve HIV-1 load into coreceptor-specific components. Measurements were analyzed as cofactors of progression in multivariable Cox models adjusted for concurrent CD4 cell count and total viral load, applying inverse probability weights to adjust for sampling bias. Results: Patients with X4 variants at baseline displayed reduced CD4 cell responses compared with those without X4 strains (40 versus 82 cells/mu l; P= 0.012). The adjusted multivariable hazard ratio (HR) for clinical progression was 4.8 [95% confidence interval (Cl) 2.3-10.0] for those demonstrating X4 strains at baseline. The X4-specific HIV-1 load was a similarly independent predictor, with HR values of 3.7(95%Cl, 1.2-11.3) and 5.9 (95% Cl, 2.2-15.0) for baseline loads of 2.2-4.3 and > 4.3 log(10)copies/ml, respectively, compared with < 2.2 log(10)copies/ml. Conclusions: HIV-1 coreceptor usage and X4-specific viral loads strongly predicted disease progression during cART, independent of and in addition to CD4 cell count or total viral load. Detection and quantification of X4 strains promise to be clinically useful biomarkers to guide patient management and study HIV-1 pathogenesis.
Resumo:
This paper presents and discusses further aspects of the subjectivist interpretation of probability (also known as the 'personalist' view of probabilities) as initiated in earlier forensic and legal literature. It shows that operational devices to elicit subjective probabilities - in particular the so-called scoring rules - provide additional arguments in support of the standpoint according to which categorical claims of forensic individualisation do not follow from a formal analysis under that view of probability theory.
Resumo:
Natural populations are of finite size and organisms carry multilocus genotypes. There are, nevertheless, few results on multilocus models when both random genetic drift and natural selection affect the evolutionary dynamics. In this paper we describe a formalism to calculate systematic perturbation expansions of moments of allelic states around neutrality in populations of constant size. This allows us to evaluate multilocus fixation probabilities (long-term limits of the moments) under arbitrary strength of selection and gene action. We show that such fixation probabilities can be expressed in terms of selection coefficients weighted by mean first passages times of ancestral gene lineages within a single ancestor. These passage times extend the coalescence times that weight selection coefficients in one-locus perturbation formulas for fixation probabilities. We then apply these results to investigate the Hill-Robertson effect and the coevolution of helping and punishment. Finally, we discuss limitations and strengths of the perturbation approach. In particular, it provides accurate approximations for fixation probabilities for weak selection regimes only (Ns < or = 1), but it provides generally good prediction for the direction of selection under frequency-dependent selection.