182 resultados para pre-engineering
Resumo:
The generation of a high productivity cell line is a critical step in the production of a therapeutic protein. Many innovative engineering strategies have been devised in order to maximize the expression rate of production cells for increased process efficiency. Less effort has focused on improvements to the cell line generation process, which is typically long and laborious when using mammalian cells. Based on unexpected findings when generating stable CHO cell lines expressing human IL-17F, we studied the benefit of expressing this protein during the establishment of production cell lines. We demonstrate that IL-17F expression enhances the rate of selection and overall number of selected cell lines as well as their transgene expression levels. We also show that this benefit is observed with different parental CHO cell lines and selection systems. Furthermore, IL-17F expression improves the efficiency of cell line subcloning processes. IL-17F can therefore be exploited in a standard manufacturing process to obtain higher productivity clones in a reduced time frame.
Resumo:
Flexible intramedullary nailing (FIN) is the gold standard treatment for femur fracture in school-aged children. It has been performed successfully in younger children, although Spica cast immobilisation (SCI) has been the most widely used strategy to date. METHOD: A retrospective analysis was performed between two comparable groups of children aged 1-4 years with a femoral shaft fracture. Two University hospitals, each using specific treatment guidelines, participated in the study: SCI in Group I (Basel, Switzerland) and FIN in Group II (Lausanne, Switzerland). RESULTS: Group I included 19 children with a median age of 26 months (range 12-46 months). Median hospital stay was 1 day (range 0-5 days) and casts were retained for a median duration of 21 days (range 12-29 days). General anaesthesia was used in six children and sedation in four. Skin breakdown secondary to cast irritation occurred in two children (10.5%). The median follow-up was 114 months (range 37-171 months). No significant malunion was noted. Group II included 27 children with a median age of 38.4 months (range 18.7-46.7 months). Median hospital stay was 4 days (range 1-13 days). All children required general anaesthesia for insertion and removal of the nails. Free mobilisation and full weight bearing were allowed at a median of 2 days (range 1-10 days) and 7 days (range 1-30 days), respectively, postoperatively. Nail exteriorisation was noted in three children (11%). The median follow-up was 16.5 months (range 8-172 months). No significant malunion was reported. CONCLUSIONS: Young children with a femoral shaft fracture treated by SCI or FIN had similarly favourable outcomes and complication rates. FIN allowed earlier mobilisation and full weight bearing. Compared to SCI, a greater number of children required general anaesthesia. In a pre-school child with a femoral shaft fracture, immediate SCI applied by a paediatric orthopaedic team following specific guidelines allowed early discharge from hospital with few complications.
Resumo:
Recognition by the T-cell receptor (TCR) of immunogenic peptides (p) presented by class I major histocompatibility complexes (MHC) is the key event in the immune response against virus infected cells or tumor cells. The major determinant of T cell activation is the affinity of the TCR for the peptide-MHC complex, though kinetic parameters are also important. A study of the 2C TCR/SIYR/H-2Kb system using a binding free energy decomposition (BFED) based on the MM-GBSA approach had been performed to assess the performance of the approach on this system. The results showed that the TCR-p-MHC BFED including entropic terms provides a detailed and reliable description of the energetics of the interaction (Zoete and Michielin, 2007). Based on these results, we have developed a new approach to design sequence modifications for a TCR recognizing the human leukocyte antigen (HLA)-A2 restricted tumor epitope NY-ESO-1. NY-ESO-1 is a cancer testis antigen expressed not only in melanoma, but also on several other types of cancers. It has been observed at high frequencies in melanoma patients with unusually positive clinical outcome and, therefore, represents an interesting target for adoptive transfer with modified TCR. Sequence modifications of TCR potentially increasing the affinity for this epitope have been proposed and tested in vitro. T cells expressing some of the proposed TCR mutants showed better T cell functionality, with improved killing of peptide-loaded T2 cells and better proliferative capacity compared to the wild type TCR expressing cells. These results open the door of rational TCR design for adoptive transfer cancer therapy.
Resumo:
Deficits in memory consolidation have been reported in adult patients with epilepsy but, not to our knowledge, in children. We report the long-term follow-up (9 y. o. to 18 y. o.) of a boy who suffered from temporal lobe epilepsy and underwent a left temporal lobectomy with amygdalo-hippocampal resection at the age of 10. He showed an abnormal forgetting rate when trying to encode new information and a significant deficit for retrieving remote episodic memories (when compared with his twin brother), both consistent with a consolidation disorder. His memory condition slightly improved after cessation of the epilepsy, nevertheless did not normalize. No standard memory assessment could pinpoint his memory problem, hence an adapted methodology was needed. We discuss the nature of the memory deficit, its possible causes and its clinical implications.
Resumo:
The ability to efficiently produce recombinant proteins in a secreted form is highly desirable and cultured mammalian cells such as CHO cells have become the preferred host as they secrete proteins with human-like post-translational modifications. However, attempts to express high levels of particular proteins in CHO cells may consistently result in low yields, even for non-engineered proteins such as immunoglobulins. In this study, we identified the responsible faulty step at the stage of translational arrest, translocation and early processing for such a "difficult-to-express" immunoglobulin, resulting in improper cleavage of the light chain and its precipitation in an insoluble cellular fraction unable to contribute to immunoglobulin assembly. We further show that proper processing and secretion were restored by over-expressing human signal receptor protein SRP14 and other components of the secretion pathway. This allowed the expression of the difficult-to-express protein to high yields, and it also increased the production of an easy-to-express protein. Our results demonstrate that components of the secretory and processing pathways can be limiting, and that engineering of the secretory pathway may be used to improve the secretion efficiency of therapeutic proteins from CHO cells.
Resumo:
We investigated in conscious normotensive rats the effect of SKF64139 (2 mg i.v.), a potent phenylethanolamine N-methyltransferase (PNMT) inhibitor, on blood pressure responses to norepinephrine (40, 80, and 160 ng i.v.); methoxamine (2.5, 5 and 10 micrograms i.v.), a directly active sympathomimetic agent that is not taken up by adrenergic nerves; and tyramine (20, 40, and 80 micrograms i.v.), an indirectly acting sympathomimetic amine. The pressor effect of norepinephrine was not changed by 2 mg of SKF64139, while those of methoxamine and tyramine were significantly reduced. The dose-response curve to exogenous norepinephrine was also evaluated following blockade of norepinephrine uptake in the nerve endings using 0.25 mg desipramine i.v. This dose of desipramine had no effect on blood pressure increase induced by methoxamine. In rats pretreated with the neuronal uptake inhibitor desipramine in a dose that did not affect alpha-adrenoceptors, SKF64139 significantly decreased the pressor responses to norepinephrine. Increasing the dose of SKF64139 to 8 mg i.v. resulted in a significant fall in base-line blood pressure and in a blunted blood pressure response to norepinephrine. These data demonstrate that in vivo the PNMT inhibitor SKF64139 blocks alpha-adrenoceptors and inhibits neuronal uptake. The alpha-adrenoceptor blocking properties of SKF65139 are masked by simultaneous blockade of norepinephrine uptake when agonists with affinity for the uptake system are used. These findings need to be taken into account when interpreting cardiovascular effects of the PNMT inhibitor SKF64139.
Resumo:
Drug screening is an important issue in clinical and forensic toxicology. Gas chromatography coupled to mass spectrometry (GC-MS) remains the gold standard technique for the screening of unknown compounds in urine samples. However, this technique requires substantial sample preparation, which is time consuming. Moreover, some common drugs such as cannabis cannot be easily detected in urine using general procedures. In this work, a sample preparation protocol for treating 200 μL of urine in less than 30 min is described. The enzymatic hydrolysis of glucuro-conjugates was performed in 5 min thanks to the use of microwaves. The use of a deconvolution software allowed reducing the GC-MS run to 10 min, without impairing the quality of the compound identifications. Comparing the results from 139 authentic urine samples to those obtained using the current routine analysis indicated this method performed well. Moreover, additional 5-min GC-MS/MS programs are described, enabling a very sensitive target screening of 54 drugs, including THC-COOH or buprenorphine, without further sample preparation. These methods appeared as an interesting alternative to immuno-assays based screening. The analytical strategy presented in this article proved to be a promising approach for systematic toxicological analysis (STA) of drugs in urine.
Resumo:
We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.
Resumo:
Involuntary choreiform movements are a clinical hallmark of Huntington's disease. Studies in clinically affected patients suggest a shift of motor activations to parietal cortices in response to progressive neurodegeneration. Here, we studied pre-symptomatic gene carriers to examine the compensatory mechanisms that underlie the phenomenon of retained motor function in the presence of degenerative change. Fifteen pre-symptomatic gene carriers and 12 matched controls performed button presses paced by a metronome at either 0.5 or 2 Hz with four fingers of the right hand whilst being scanned with functional magnetic resonance imaging. Subjects pressed buttons either in the order of a previously learnt 10-item finger sequence, from left to right, or kept still. Error rates ranged from 2% to 7% in the pre-symptomatic gene carriers and from 0.5% to 4% in controls, depending on the condition. No significant difference in task performance was found between groups for any of the conditions. Activations in the supplementary motor area (SMA) and superior parietal lobe differed with gene status. Compared with healthy controls, gene carriers showed greater activations of left caudal SMA with all movement conditions. Activations correlated with increasing speed of movement were greater the closer the gene carriers were to estimated clinical diagnosis, defined by the onset of unequivocal motor signs. Activations associated with increased movement complexity (i.e. with the pre-learnt 10-item sequence) decreased in the rostral SMA with nearing diagnostic onset. The left superior parietal lobe showed reduced activation with increased movement complexity in gene carriers compared with controls, and in the right superior parietal lobe showed greater activations with all but the most demanding movements. We identified a complex pattern of motor compensation in pre-symptomatic gene carriers. The results show that preclinical compensation goes beyond a simple shift of activity from premotor to parietal regions involving multiple compensatory mechanisms in executive and cognitive motor areas. Critically, the pattern of motor compensation is flexible depending on the actual task demands on motor control.
Resumo:
Background Impaired glucose regulation (IGR) is associated with detrimental cardiovascular outcomes such as cardiovascular disease risk factors (CVD risk factors) or intima-media thickness (IMT). Our aim was to examine whether these associations are mediated by body mass index (BMI), waist circumference (waist) or fasting serum insulin (insulin) in a population in the African region. Methods Major CVD risk factors (systolic blood pressure, smoking, LDL-cholesterol, HDL-cholesterol,) were measured in a random sample of adults aged 25-64 in the Seychelles (n=1255, participation rate: 80.2%). According to the criteria of the American Diabetes Association, IGR was divided in four ordered categories: 1) normal fasting glucose (NFG), 2) impaired fasting glucose (IFG) and normal glucose tolerance (IFG/NGT), 3) IFG and impaired glucose tolerance (IFG/IGT), and 4) diabetes mellitus (DM). Carotid and femoral IMT was assessed by ultrasound (n=496). Results Age-adjusted levels of the major CVD risk factors worsened gradually across IGR categories (NFG < IFG/NGT < IFG/IGT < DM), particularly HDL-cholesterol and blood pressure (p for trend <0.001). These relationships were marginally attenuated upon further adjustment for waist, BMI or insulin (whether considered alone or combined) and most of these relationships remained significant. With regards to IMT, the association was null with IFG/NGT, weak with IFG/IGT and stronger with DM (all more markedly at femoral than carotid levels). The associations between IMT and IFG/IGT or DM (adjusted by age and major CVD risk factors) decreased only marginally upon further adjustment for BMI, waist or insulin. Further adjustment for family history of diabetes did not alter the results. Conclusions We found graded relationships between IGR categories and both major CVD risk factors and carotid/femoral IMT. These relationships were only partly accounted for by BMI, waist and insulin. This suggests that increased CVD-risk associated with IGR is also mediated by factors other than the considered markers of adiposity and insulin resistance. The results also imply that IGR and associated major CVD risk factors should be systematically screened and appropriately managed.
Resumo:
The mature TCR is composed of a clonotypic heterodimer (alpha beta or gamma delta) associated with the invariant CD3 components (gamma, delta, epsilon and zeta). There is now considerable evidence that more immature forms of the TCR-CD3 complex (consisting of either CD3 alone or CD3 associated with a heterodimer of TCR beta and pre-T alpha) can be expressed at the cell surface on early thymocytes. These pre-TCR complexes are believed to be necessary for the ordered progression of early T cell development. We have analyzed in detail the expression of both the pre-TCR and CD3 complex at various stages of adult thymus development. Our data indicate that all CD3 components are already expressed at the mRNA level by the earliest identifiable (CD4lo) thymic precursor. In contrast, genes encoding the pre-TCR complex (pre-T alpha and fully rearranged TCR beta) are first expressed at the CD44loCD25+CD4-CD8- stage. Detectable surface expression of both CD3 and TCR beta are delayed relative to expression of the corresponding genes, suggesting the existence of other (as yet unidentified) components of the pre-TCR complex.