320 resultados para potassium urine level
Resumo:
Résumé : Les jasmonates (JA), une famille d'hor1none végétale, jouent un rôle central dans la réponse à la blessure, et aux attaques d'insectes et de pathogènes. Les JA sont principalement dérivés d'un acide gras, l'acide linolénique. L'addition par une lipoxygénase d'une molécule d'oxygène à l'acide linolénique initie la synthèse de JA. Cependant les mécanismes régulant l'activation de la biosynthèse de JA ne sont pas encore connus. C'est pour cette raison que dans ce travail, nous avons caractérisé chez Arabidopsis thaliana (l'Arabette des Dames) un mutant fou2 dont l'activité lipoxygénase est plus élevée que celle d'une plante sauvage. Les niveaux de JA sont constitutivement plus élevés et l'activation de la synthèse de JA après blessure est fortement plus induite chez fou2 que chez le type sauvage. En outre, fou2 est plus résistant au pathogène Botrytis cinerea et à la chenille Spodoptera littoralis. Afin de comprendre quel mécanisme chez fou2 génére ce phénotype, nous avons cloné le gène responsable du phénotype de fou2. Le mutant fou2 porte une mutation dans le gène d'un canal à deux pores transportant probablement du potassium, du lumen de la vacuole végétale vers le compartiment cytosolique. L'analyse du protéome de fou2 a permis d'identifier une expression plus élevée de sept protéines régulées par les JA ou le stress. La découverte de l'implication d'un canal dans le phénotype de fou2 renforce l'hypothèse que les flux de cations pourraient être impliqués dans les étapes précoces de la synthèse des JA. Nous avons également étudié le protéome et la physiologie d'une feuille blessée, Pour évaluer les changements d'expression protéique en réponse à la blessure et contrôlés par les JA, nous avons quantifié l'expression de 5937 protéines chez une plante d'Arabidopsis sauvage et chez un mutant incapable de synthétiser des JA. Parmi ces 5937 protéines, nous avons identifié 99 protéines régulées par la blessure chez le type sauvage. Nous avons observé pour 65% des protéines dont l'expression protéique changeait après blessure une bonne corrélation entre la quantité de transcrits et de protéines. Plusieurs enzymes de la voie des chorismates impliquées dans la biosynthèse des acides aminés phénoliques étaient induites par les JA après blessure. Une quantification des acides aminés a montré que les niveaux d'acides aminés phénoliques augmentaient significativement après blessure. La blessure induisait aussi des changements dans l'expression de protéines impliquées dans la réponse au stress et particulièrement au stress oxydatif. Nous avons quantifié l'état réduit et oxydé du glutathion, un tripeptide qui, sous sa forme réduite, est l'antioxydant majeur des cellules. Nous avons trouvé une quantité significativement plus élevée de glutathion oxydé chez le type sauvage blessé que chez la plante aus blessée. Ce résultat suggère que la génération d'un stress oxydatif et la proportion relative de glutathions réduits et oxydés sont contrôlés par les JA après blessure. Abstract : Plants possess a family of potent fatty acid-derived wound-response and developmental regulators: the jasmonates. These compounds are derived from the tri?unsaturated fatty acid a-linolenic-acid (18:3). Addition of an oxygen molecule to 18:3 by 13-lipoxygenases (13-LOX) initiates JA biosynthesis. Actually components regulating the activation of JA biosynthesis are poorly defined. Therefore we characterized in Arabidopsis thaliana the fatty acid Qxygenation upregulated 2 (fou2) mutant, which was previously isolated in a screen for mutants with an enhanced 13-LOX activity. As a consequence of this increased 13-LOX activity, JA levels in fou2 are higher than in wild type (WT) and wounding strongly increased JA biosynthesis compared to WT. fou2 was more resistant to the fungus Botrytis cinerea and the generalist caterpillar Spodaptera littomlis, The fou2 mutant carries a missense mutation in the Two Pore Channel 1 gene (TPCJ), which encodes a vacuolar cation channel transporting probably K* into the cytosol. Patchclamp analysis of fou2 vacuolar membranes showed faster time-dependent conductivity and activation of the mutated channel at lower membrane potentials than wild-type. Proteomic analysis of fou2 leaves identified increased levels of seven biotic stress- and JA- inducible proteins. The discovery of the implication of a channel in the fou2 phenotype strenghtens the hypothesis that cation fluxes might be implicated in early steps of JA synthesis. We further concentrated on the proteome and leaf physiology in the region proximal to wounds in Arabidopsis using the WT and the aos JA-biosynthesis deficient mutant in order to find JA- induced proteins changes. We used two successive proteomic methods to assess protein changes in response to wounding Arabidopsis leaves, two dimensional electrophoresis (2DE) and linear trap quadrupole ion-trap mass spectrometry. In total 5937 proteins were quantified. We identified 99 wound-regulated proteins in the WT. Most these proteins were also wound-regulated at the transcript level showing a good correlation between transcript and protein abundance. We identified several wound-regulated enzymes involved in amino acid biosynthesis and confirmed this result by amino acid quantification. Proteins involved in stress reponses were upregulated, particularly in redox species regulation. We found a significantly higher quantity of oxidized glutathione in wounded WT relative to wounded aos leaves. This result suggests that levels of reduced glutathione are controlled by JA after wounding.
Resumo:
Pitch is a fundamental musical factor; however, findings about its contribution to the elicitation of emotions are contradictory. The purpose of this work was to assess the effect of systematic pitch variations on self-reports of felt valence and arousal. In a within-subject design, 49 subjects listened to four 1-minute classical piano excerpts, each presented at three different pitch levels (one octave lower than the original version, the original version and one octave higher than the original version). Compared to excerpts both without octave modification and in the +1 octave variant, pleasantness of excerpts in the -1 octave variant was significantly lower. This main effect was stronger for women than men and, importantly, was modulated by the specific characteristics of the stimuli. There was also a significant, yet smaller, negative relationship between pitch level and arousal, moderated by gender: Compared to higher pitch, lower pitch was associated with higher arousal in men only. Regarding the complex outcomes of this study, future studies should investigate to which extent our findings can be generalized to other musical works. The ultimate goal might be to demonstrate how pitch level interacts with other musical features and listeners' characteristics in eliciting diverse affective experiences.
Resumo:
Since 2004, cannabis has been prohibited by the World Anti-Doping Agency for all sports competitions. In the years since then, about half of all positive doping cases in Switzerland have been related to cannabis consumption. In doping urine analysis, the target analyte is 11-nor-9-carboxy-Delta(9)-tetrahydrocannabinol (THC-COOH), the cutoff being 15 ng/mL. However, the wide urinary detection window of the long-term metabolite of Delta(9)-tetrahydrocannabinol (THC) does not allow a conclusion to be drawn regarding the time of consumption or the impact on the physical performance. The purpose of the present study on light cannabis smokers was to evaluate target analytes with shorter urinary excretion times. Twelve male volunteers smoked a cannabis cigarette standardized to 70 mg THC per cigarette. Plasma and urine were collected up to 8 h and 11 days, respectively. Total THC, 11-hydroxy-Delta(9)-tetrahydrocannabinol (THC-OH), and THC-COOH were determined after hydrolysis followed by solid-phase extraction and gas chromatography/mass spectrometry. The limits of quantitation were 0.1-1.0 ng/mL. Eight puffs delivered a mean THC dose of 45 mg. Plasma levels of total THC, THC-OH, and THC-COOH were measured in the ranges 0.2-59.1, 0.1-3.9, and 0.4-16.4 ng/mL, respectively. Peak concentrations were observed at 5, 5-20, and 20-180 min. Urine levels were measured in the ranges 0.1-1.3, 0.1-14.4, and 0.5-38.2 ng/mL, peaking at 2, 2, and 6-24 h, respectively. The times of the last detectable levels were 2-8, 6-96, and 48-120 h. Besides high to very high THC-COOH levels (245 +/- 1,111 ng/mL), THC (3 +/- 8 ng/mL) and THC-OH (51 +/- 246 ng/mL) were found in 65 and 98% of cannabis-positive athletes' urine samples, respectively. In conclusion, in addition to THC-COOH, the pharmacologically active THC and THC-OH should be used as target analytes for doping urine analysis. In the case of light cannabis use, this may allow the estimation of more recent consumption, probably influencing performance during competitions. However, it is not possible to discriminate the intention of cannabis use, i.e., for recreational or doping purposes. Additionally, pharmacokinetic data of female volunteers are needed to interpret cannabis-positive doping cases of female athletes.
Resumo:
Neuropeptide Y (NPY) is a 36 amino acid peptide present in the central and peripheral nervous system. Numerous studies point to a role of NPY in cardiovascular regulation. NPY effects are mediated through stimulation of specific cell surface G protein-coupled receptors. To allow biochemical studies of the receptor and of its interaction with the ligand, we have developed a potent expression system for NPY receptors using a recombinant vaccinia virus. A human NPY receptor cDNA was fused to a strong vaccinia virus promoter and inserted into the viral genome by homologous recombination. Recombinant viruses were isolated and tested for their ability to induce NPY binding site expression following infection of mammalian cell lines. Using saturation and competition binding experiments we measured a Bmax of 5-10 x 10(6) NPY binding sites per cell. The Kd for the binding of NPY is about 20 nM. Labelling of infected cells with a fluorochrome-labelled NPY indicated that the recombinant protein integrates into the cell membrane.
Resumo:
19-Norandrosterone (19-NA) as its glucuronide derivative is the target metabolite in anti-doping testing to reveal an abuse of nandrolone or nandrolone prohormone. To provide further evidence of a doping with these steroids, the sulfoconjugate form of 19-norandrosterone in human urine might be monitored as well. In the present study, the profiling of sulfate and glucuronide derivatives of 19-norandrosterone together with 19-noretiocholanolone (19-NE) were assessed in the spot urines of 8 male subjects, collected after administration of 19-nor-4-androstenedione (100mg). An LC/MS/MS assay was employed for the direct quantification of sulfoconjugates, whereas a standard GC/MS method was applied for the assessment of glucuroconjugates in urine specimens. Although the 19-NA glucuronide derivative was always the most prominent at the excretion peak, inter-individual variability of the excretion patterns was observed for both conjugate forms of 19-NA and 19-NE. The ratio between the glucuro- and sulfoconjugate derivatives of 19-NA and 19-NE could not discriminate the endogenous versus the exogenous origin of the parent compound. However, after ingestion of 100mg 19-nor-4-androstenedione, it was observed in the urine specimens that the sulfate conjugates of 19-NA was detectable over a longer period of time with respect to the other metabolites. These findings indicate that more interest shall be given to this type of conjugation to deter a potential doping with norsteroids.
Resumo:
PURPOSE: Retinal degeneration is associated with iron accumulation in several rodent models in which iron-regulating proteins are impaired. Oxidative stress is catalyzed by unbound iron. METHODS: The role of the heavy chain of ferritin, which sequesters iron, in regulating the thickness of the photoreceptor nuclear layer in the 4- and 16-month-old wild-type H ferritin (HFt(+/+)) and heterozygous H ferritin (HFt(+/-)) mice was investigated, before and 12 days after exposure to 13,000-lux light for 24 hours. The regulation of gene expression of the various proteins involved in iron homeostasis, such as transferrin, transferrin receptor, hephaestin, ferroportin, iron regulatory proteins 1 and 2, hepcidin, ceruloplasmin, and heme-oxygenase 1, was analyzed by quantitative (q)RT-PCR during exposure (2, 12, and 24 hours) and 24 hours after 1 day of exposure in the 4-month-old HFt(+/+) and HFt(+/-) mouse retinas. RESULTS: Retinal degeneration in the 4-month-old HFt(+/-) mice was more extensive than in the HFt(+/+) mice. Yet, it was more extensive in both of the 16-month-old mouse groups, revealing the combined effect of age and excessive light. Injury caused by excessive light modified the temporal gene expression of iron-regulating proteins similarly in the HFt(+/-) and HFt(+/+) mice. CONCLUSIONS: Loss of one allele of H ferritin appears to increase light-induced degeneration. This study highlighted that oxidative stress related to light-induced injury is associated with major changes in gene expression of iron metabolism proteins.
Resumo:
In this review, we discuss genetic evidence supporting Guyton's hypothesis stating that blood pressure control is critically depending on fluid handling by the kidney. The review is focused on the genetic dissection of sodium and potassium transport in the distal nephron and the collecting duct that are the most important sites for the control of sodium and potassium balance by aldosterone and angiotensin II. Thanks to the study of Mendelian forms of hypertension and their corresponding transgenic mouse models, three main classes of diuretic receptors (furosemide, thiazide, amiloride) and the main components of the aldosterone- and angiotensin-dependent signaling pathways were molecularly identified over the past 20years. This will allow to design rational strategies for the treatment of hypertension and for the development of the next generation of diuretics.
Resumo:
BACKGROUND: Measuring syringe availability and coverage is essential in the assessment of HIV/AIDS risk reduction policies. Estimates of syringe availability and coverage were produced for the years 1996 and 2006, based on all relevant available national-level aggregated data from published sources. METHODS: We defined availability as the total monthly number of syringes provided by harm reduction system divided by the estimated number of injecting drug users (IDU), and defined coverage as the proportion of injections performed with a new syringe, at national level (total supply over total demand). Estimates of supply of syringes were derived from the national monitoring system, including needle and syringe programmes (NSP), pharmacies, and medically prescribed heroin programmes. Estimates of syringe demand were based on the number of injections performed by IDU derived from surveys of low threshold facilities for drug users (LTF) with NSP combined with the number of IDU. This number was estimated by two methods combining estimates of heroin users (multiple estimation method) and (a) the number of IDU in methadone treatment (MT) (non-injectors) or (b) the proportion of injectors amongst LTF attendees. Central estimates and ranges were obtained for availability and coverage. RESULTS: The estimated number of IDU decreased markedly according to both methods. The MT-based method (from 14,818 to 4809) showed a much greater decrease and smaller size of the IDU population compared to the LTF-based method (from 24,510 to 12,320). Availability and coverage estimates are higher with the MT-based method. For 1996, central estimates of syringe availability were 30.5 and 18.4 per IDU per month; for 2006, they were 76.5 and 29.9. There were 4 central estimates of coverage. For 1996 they ranged from 24.3% to 43.3%, and for 2006, from 50.5% to 134.3%. CONCLUSION: Although 2006 estimates overlap 1996 estimates, the results suggest a shift to improved syringe availability and coverage over time.