161 resultados para mitogen-activated protein kinase phosphatase-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

SummaryLow-density lipoproteins (LDLs) have an important physiological role in organism transporting cholesterol and other fatty substances to target tissues. However, elevated LDL levels in the blood are associated with the formation of arterial plaques and consequently atherosclerosis. It is therefore important to characterize the intracellular pathways induced upon LDL stimulation as they might be involved in the pathological properties of these lipoproteins. It has been previously found that LDL stimulation of mouse embryonic fibroblasts activates p38 mitogen activated protein kinases (MAPKs). This leads to cell spreading and increase in the wound healing capabilities of the cells. These two responses might occur within atherosclerotic plaques.The aim of this project is to reveal the missing links between LDL particle and activation of p38 MAPK kinase. As previously shown in our lab activation of p38 MAPK kinase by the LDL particles occur independently of classical LDL receptor (LDLR). In this study we have shown that scavenger receptor type Β class I (SR-BI) is responsible for the signal transduction from the LDLs to the p38 MAPK. We have also shown that Mitogen activated kinase kinases (MKKs) that can directly activate ρ 38 MAPK in these conditions are MKK3 and MKK6 but not MKK4. We have also tested some of the intermediate components of the pathway like Ras and PI3 kinase but found that they do not play a role.The data obtained in this study showed a part of molecular mechanism responsible for p38 MAPK activation and subsequent wound healing and can contribute to our knowledge on function of the fibroblasts in the development of the atherosclerotic plaques.Diabetes Mellitus is a condition caused by disordered metabolism of blood glucose level. It is one of the most commonly spread disease in the western world, with the incidence reaching 8% of population in United States. Two most common types of diabetes are type 1 and 2 that differs slightly in the mechanism of the development. However in the basis of both types lies the cell death of pancreatic beta cells. The aim of this work is to improve beta cells survival in different pathophysiological settings. This could be extrapolated to the conditions in which Diabetes develops in humans. We decided to use RasGAP- derived fragment Ν with its strong antiapoptotic effect in beta cells. In our lab we have demonstrated that in the mild stress conditions RasGAP can be cleaved by caspases at the position 455 producing two fragments, fragment Ν and fragment C. Fragment Ν exerts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effect of XG-102 (formerly D-JNKI1), a TAT-coupled dextrogyre peptide that selectively inhibits the c-Jun N-terminal kinase, in the treatment of endotoxin-induced uveitis (EIU). METHODS: EIU was induced in Lewis rats by LPS injection. XG-102 was administered at the time of LPS challenge. The ocular biodistribution of XG-102 was evaluated using immunodetection at 24 hours after either 20 microg/kg IV (IV) or 0.2 microg/injection intravitreous (IVT) administrations in healthy or uveitic eyes. The effect of XG-102 on EIU was evaluated using clinical scoring, infiltration cell quantification, inducible nitric oxide synthase (iNOS) expression and immunohistochemistry, and cytokines and chemokines kinetics at 6, 24, and 48 hours using multiplex analysis on ocular media. Control EIU eyes received vehicle injection IV or IVT. The effect of XG-102 on c-Jun phosphorylation in EIU was evaluated by Western blot in eye tissues. RESULTS: After IVT injection, XG-102 was internalized in epithelial cells from iris/ciliary body and retina and in glial and microglial cells in both healthy and uveitic eyes. After IV injection, XG-102 was concentrated primarily in inflammatory cells of uveitic eyes. Using both routes of administration, XG-102 significantly inhibited clinical signs of EIU, intraocular cell infiltration, and iNOS expression together with reduced phosphorylation of c-Jun. The anti-inflammatory effect of XG-102 was mediated by iNOS, IFN-gamma, IL-2, and IL-13. CONCLUSIONS: This is the first evidence that interfering with the JNK pathway can reduce intraocular inflammation. Local administration of XG-102, a clinically evaluated peptide, may have potential for treating uveitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We elucidated the mechanisms of action of two n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in Jurkat T-cells. Both DHA and EPA were principally incorporated into phospholipids in the following order: phosphatidylcholine < phosphatidylethanolamine < phosphatidylinositol/phosphatidylserine. Furthermore, two isoforms of phospholipase A(2) (i.e., calcium-dependent and calcium-independent) were implicated in the release of DHA and EPA, respectively, during activation of these cells. The two fatty acids inhibited the phorbol 12-myristate 13-acetate (PMA)-induced plasma membrane translocation of protein kinase C (PKC)-alpha and -epsilon. The two n-3 PUFAs also inhibited the nuclear translocation of nuclear factor kappaB (NF-kappaB) and the transcription of the interleukin-2 (IL-2) gene in PMA-activated Jurkat T-cells. Together, these results demonstrate that DHA and EPA, being released by two isoforms of phospholipase A(2), modulate IL-2 gene expression by exerting their action on two PKC isoforms and NF-kappaB in Jurkat T-cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroinflammation is observed in many brain pathologies: in neurodegenerative diseases and multiple sclerosis as well as in chemically induced lesions. It is characterized by the reactivity of microglial cells and astrocytes, activation of inducible NO-synthase (i-NOS), and increased expression and/or release of cytokines and chemokines. Clearly, cell-to-cell signaling between the different brain cell types plays an important role in the initiation and propagation of neuroinflammation, but despite the growing list of known molecular actors, the underlying pathways and the sequence of events remain to be fully elucidated. The present chapter presents an example of how to assess neuroinflammation in complex brain tissues, using aggregating brain cell cultures as an in vitro model. This three-dimensional cell culture system provides optimal cell-to-cell interactions crucial for histotypic cellular maturation and control of neuroinflammatory processes. The techniques described here comprise immunocytochemistry to assess the reactivity of microglia and astrocytes and the expression of cytokines; quantitative RT-PCR to measure the mRNA expression of cytokines (TNF-α, IL-1β, IL-6, IL-1ra, TGF-β, IL-15, IFN-γ), chemokines (ccl5, cxcl1, cxcl2), and i-NOS; and immunoblotting to assess MAP kinase pathway activation (phosphorylation of p38 and p44/42 MAP kinases).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the principal cell of the renal collecting duct, vasopressin regulates the expression of a gene network responsible for sodium and water reabsorption through the regulation of the water channel and the epithelial sodium channel (ENaC). We have recently identified a novel vasopressin-induced transcript (VIT32) that encodes for a 142 amino acid vasopressin-induced protein (VIP32), which has no homology with any protein of known function. The Xenopus oocyte expression system revealed two functions: (i) when injected alone, VIT32 cRNA rapidly induces oocyte meiotic maturation through the activation of the maturation promoting factor, the amphibian homolog of the universal M phase trigger Cdc2/cyclin; and (ii) when co-injected with the ENaC, VIT32 cRNA selectively downregulates channel activity, but not channel cell surface expression. In the kidney principal cell, VIP32 may be involved in the downregulation of transepithelial sodium transport observed within a few hours after vasopressin treatment. VIP32 belongs to a novel gene family ubiquitously expressed in oocyte and somatic cells that may be involved in G to M transition and cell cycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bisphosphonates are potent inhibitors of osteoclast function widely used to treat conditions of excessive bone resorption, including tumor bone metastases. Recent evidence indicates that bisphosphonates have direct cytotoxic activity on tumor cells and suppress angiogenesis, but the associated molecular events have not been fully characterized. In this study we investigated the effects of zoledronate, a nitrogen-containing bisphosphonate, and clodronate, a non-nitrogen-containing bisphosphonate, on human umbilical vein endothelial cell (HUVEC) adhesion, migration, and survival, three events essential for angiogenesis. Zoledronate inhibited HUVEC adhesion mediated by integrin alphaVbeta3, but not alpha5beta1, blocked migration and disrupted established focal adhesions and actin stress fibers without modifying cell surface integrin expression level or affinity. Zoledronate treatment slightly decreased HUVEC viability and strongly enhanced tumor necrosis factor (TNF)-induced cell death. HUVEC treated with zoledronate and TNF died without evidence of enhanced annexin-V binding, chromatin condensation, or nuclear fragmentation and caspase dependence. Zoledronate inhibited sustained phosphorylation of focal adhesion kinase (FAK) and in combination with TNF, with and without interferon (IFN) gamma, of protein kinase B (PKB/Akt). Constitutive active PKB/Akt protected HUVEC from death induced by zoledronate and TNF/IFNgamma. Phosphorylation of c-Src and activation of NF-kappaB were not affected by zoledronate. Clodronate had no effect on HUVEC adhesion, migration, and survival nor did it enhanced TNF cytotoxicity. Taken together these data demonstrate that zoledronate sensitizes endothelial cells to TNF-induced, caspase-independent programmed cell death and point to the FAK-PKB/Akt pathway as a novel zoledronate target. These results have potential implications to the clinical use of zoledronate as an anti-angiogenic or anti-cancer agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor-alpha (TNF) has been implicated in retinal ganglion cells (RGC) degeneration in glaucoma. Atypical protein kinase C (PKC) zeta is involved in cell protection against various stresses. The aim of this study was to investigate the potential proapoptotic effects of intravitreal injections of TNF with or without PKCzeta specific inhibitor on the rat retina. TNF was injected in the vitreous of rat eyes alone or in combination with specific PKCzeta inhibitor. PKCzeta and NF-kappaB were studied by immunohistochemistry and western-blotting analysis on retina, and apoptosis quantified by the TUNEL assay. While low basal PKCzeta was observed in the control eyes, TNF induced intense expression of PKCzeta mostly in bipolar cells processes. PKCzeta staining became nuclear when TNF was coinjected with PKCzeta inhibitor. TNF alone did not induce apoptosis in the retina. Coinjection of the PKCzeta-specific inhibitor and TNF, however, induced apoptosis in the inner nuclear and ganglion cell layers. The PKCzeta-specific inhibitor unmasks retinal cells to TNF cytotoxicity showing a link between the proapoptotic effects of TNF and the antiapoptotic PKCzeta signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: In vivo differentiation of cardiac myocytes is associated with downregulation of the glucose transporter isoform GLUT1 and upregulation of the isoform GLUT4. Adult rat cardiomyocytes in primary culture undergo spontaneous dedifferentiation, followed by spreading and partial redifferentiation, which can be influenced by growth factors. We used this model to study the signaling mechanisms modifying the expression of GLUT4 in cardiac myocytes. RESULTS: Adult rat cardiomyocytes in primary culture exhibited spontaneous upregulation of GLUT1 and downregulation of GLUT4, suggesting resumption of a fetal program of GLUT gene expression. Treatment with IGF-1 and, to a minor extent, FGF-2 resulted in restored expression of GLUT4 protein and mRNA. Activation of p38 MAPK mediated the increased expression of GLUT4 in response to IGF-1. Transient transfection experiments in neonatal cardiac myocytes confirmed that p38 MAPK could activate the glut4 promoter. Electrophoretic mobility shift assay in adult rat cardiomyocytes and transient transfection experiments in neonatal cardiac myocytes indicated that MEF2 was the main transcription factor transducing the effect of p38 MAPK activation on the glut4 promoter. CONCLUSION: Spontaneous dedifferentiation of adult rat cardiomyocytes in vitro is associated with downregulation of GLUT4, which can be reversed by treatment with IGF-1. The effect of IGF-1 is mediated by the p38 MAPK/MEF2 axis, which is a strong inducer of GLUT4 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gap-junction protein connexin36 (Cx36) contributes to control the functions of insulin-producing cells. In this study, we investigated whether the expression of Cx36 is regulated by glucose in insulin-producing cells. Glucose caused a significant reduction of Cx36 in insulin-secreting cell lines and freshly isolated pancreatic rat islets. This decrease appeared at the mRNA and the protein levels in a dose- and time-dependent manner. 2-Deoxyglucose partially reproduced the effect of glucose, whereas glucosamine, 3-O-methyl-D-glucose and leucine were ineffective. Moreover, KCl-induced depolarization of beta-cells had no effect on Cx36 expression, indicating that glucose metabolism and ATP production are not mandatory for glucose-induced Cx36 downregulation. Forskolin mimicked the repression of Cx36 by glucose. Glucose or forskolin effects on Cx36 expression were not suppressed by the L-type Ca(2+)-channel blocker nifedipine but were fully blunted by the cAMP-dependent protein kinase (PKA) inhibitor H89. A 4 kb fragment of the human Cx36 promoter was identified and sequenced. Reporter-gene activity driven by various Cx36 promoter fragments indicated that Cx36 repression requires the presence of a highly conserved cAMP responsive element (CRE). Electrophoretic-mobility-shift assays revealed that, in the presence of a high glucose concentration, the binding activity of the repressor CRE-modulator 1 (CREM-1) is enhanced. Taken together, these data provide evidence that glucose represses the expression of Cx36 through the cAMP-PKA pathway, which activates a member of the CRE binding protein family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied ischemic tolerance induced by the serine protease thrombin in two different models of experimental ischemia. In organotypic hippocampal slice cultures, we demonstrate that incubation with low doses of thrombin protects neurons against a subsequent severe oxygen and glucose deprivation. L-JNKI1, a highly specific c-jun N-terminal kinase (JNK) inhibitor, and a second specific JNK inhibitor, SP600125, prevented thrombin preconditioning (TPC). We also show that the exposure to thrombin increases the level of phosphorylated c-jun, the major substrate of JNK. TPC, in vivo, leads to significantly smaller lesion sizes after a 30-min middle cerebral artery occlusion (MCAo), and the preconditioned mice were better off in the three tests used to evaluate functional recovery. In accordance with in vitro results, TPC in vivo was prevented by administration of L-JNKI1, supporting a role for JNK in TPC. These results, from two different TPC models and with two distinct JNK inhibitors, show that JNK is likely to be involved in TPC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1-4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blue light mediates the phosphorylation of a membrane protein in seedlings from several plant species. When crude microsomal membrane proteins from dark-grown pea (Pisum sativum L.), sunflower (Helianthus annuus L.), zucchini (Cucurbita pepo L.), Arabidopsis (Arabidopsis thaliana L.), or tomato (Lycopersicon esculentum L.) stem segments, or from maize (Zea mays L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), wheat (Triticum aestivum L.), or sorghum (Sorghum bicolor L.) coleoptiles are illuminated and incubated in vitro with [gamma-(32)P]ATP, a protein of apparent molecular mass from 114 to 130 kD is rapidly phosphorylated. Hence, this system is probably ubiquitous in higher plants. Solubilized maize membranes exposed to blue light and added to unirradiated solubilized maize membranes show a higher level of phosphorylation of the light-affected protein than irradiated membrane proteins alone, suggesting that an unirradiated substrate is phosphorylated by a light-activated kinase. This finding is further demonstrated with membrane proteins from two different species, where the phosphorylated proteins are of different sizes and, hence, unambiguously distinguishable on gel electrophoresis. When solubilized membrane proteins from one species are irradiated and added to unirradiated membrane proteins from another species, the unirradiated protein becomes phosphorylated. These experiments indicate that the irradiated fraction can store the light signal for subsequent phosphorylation in the dark. They also support the hypothesis that light activates a specific kinase and that the systems share a close functional homology among different higher plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Islet-Brain 1, also known as JNK-interacting protein-1 (IB1/JIP-1) is a scaffold protein mainly involved in the regulation of the pro-apoptotic signalling cascade mediated by c-Jun-N-terminal kinase (JNK). IB1/JIP-1 organizes JNK and upstream kinases in a complex that facilitates JNK activation. However, overexpression of IB1/JIP-1 in neurons in vitro has been reported to result in inhibition of JNK activation and protection against cellular stress and apoptosis. The occurrence and the functional significance of stress-induced modulations of IB1/JIP-1 levels in vivo are not known. We investigated the regulation of IB1/JIP-1 in mouse hippocampus after systemic administration of kainic acid (KA), in wild-type mice as well as in mice hemizygous for the gene MAPK8IP1, encoding for IB1/JIP-1. We show here that IB1/JIP-1 is upregulated transiently in the hippocampus of normal mice, reaching a peak 8 h after seizure induction. Heterozygous mutant mice underexpressing IB1/JIP-1 showed a higher vulnerability to the epileptogenic properties of KA, whereas hippocampal IB1/JIP-1 levels remained unchanged after seizure induction. Subsequently, an increasing activation of JNK in the 8 h following seizure induction was observed in IB1/JIP-1 haploinsufficient mice, which also underwent more severe excitotoxic lesions in hippocampal CA3, as assessed histologically 3 days after KA administration. Taken together, these data indicate that IB1/JIP-1 in hippocampus participates in the regulation of the neuronal response to excitotoxic stress in a level-dependent fashion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catecholamines as well as phorbol esters can induce the phosphorylation and desensitization of the alpha1B-adrenergic receptor (alpha1BAR). In this study, phosphoamino acid analysis of the phosphorylated alpha1BAR revealed that both epinephrine- and phorbol ester-induced phosphorylation predominantly occurs at serine residues of the receptor. The findings obtained with receptor mutants in which portions of the C-tail were truncated or deleted indicated that a region of 21 amino acids (393-413) of the carboxyl terminus including seven serines contains the main phosphorylation sites involved in agonist- as well as phorbol ester-induced phosphorylation and desensitization of the alpha1BAR. To identify the serines invoved in agonist- versus phorbol ester-dependent regulation of the receptor, two different strategies were adopted, the seven serines were either substituted with alanine or reintroduced into a mutant lacking all of them. Our findings indicate that Ser394 and Ser400 were phosphorylated following phorbol ester-induced activation of protein kinase C, whereas Ser404, Ser408, and Ser410 were phosphorylated upon stimulation of the alpha1BAR with epinephrine. The observation that overexpression of G protein-coupled kinase 2 (GRK2) could increase agonist-induced phosphorylation of Ser404, Ser408, and Ser410, strongly suggests that these serines are the phosphorylation sites of the alpha1BAR for kinases of the GRK family. Phorbol ester-induced phosphorylation of the Ser394 and Ser400 as well as GRK2-mediated phosphorylation of the Ser404, Ser408, and Ser410, resulted in the desensitization of alpha1BAR-mediated inositol phosphate response. This study provides generalities about the biochemical mechanisms underlying homologous and heterologous desensitization of G protein-coupled receptors linked to the activation of phospholipase C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM/HYPOTHESIS: IL-6 induces insulin resistance by activating signal transducer and activator of transcription 3 (STAT3) and upregulating the transcription of its target gene SOCS3. Here we examined whether the peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW501516 prevented activation of the IL-6-STAT3-suppressor of cytokine signalling 3 (SOCS3) pathway and insulin resistance in human hepatic HepG2 cells. METHODS: Studies were conducted with human HepG2 cells and livers from mice null for Pparβ/δ (also known as Ppard) and wild-type mice. RESULTS: GW501516 prevented IL-6-dependent reduction in insulin-stimulated v-akt murine thymoma viral oncogene homologue 1 (AKT) phosphorylation and in IRS-1 and IRS-2 protein levels. In addition, treatment with this drug abolished IL-6-induced STAT3 phosphorylation of Tyr⁷⁰⁵ and Ser⁷²⁷ and prevented the increase in SOCS3 caused by this cytokine. Moreover, GW501516 prevented IL-6-dependent induction of extracellular-related kinase 1/2 (ERK1/2), a serine-threonine protein kinase involved in serine STAT3 phosphorylation; the livers of Pparβ/δ-null mice showed increased Tyr⁷⁰⁵- and Ser⁷²⁷-STAT3 as well as phospho-ERK1/2 levels. Furthermore, drug treatment prevented the IL-6-dependent reduction in phosphorylated AMP-activated protein kinase (AMPK), a kinase reported to inhibit STAT3 phosphorylation on Tyr⁷⁰⁵. In agreement with the recovery in phospho-AMPK levels observed following GW501516 treatment, this drug increased the AMP/ATP ratio and decreased the ATP/ADP ratio. CONCLUSIONS/INTERPRETATION: Overall, our findings show that the PPARβ/δ activator GW501516 prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 phosphorylation and preventing the reduction in phospho-AMPK levels. These effects of GW501516 may contribute to the prevention of cytokine-induced insulin resistance in hepatic cells.