246 resultados para lychnophoic acid
Resumo:
Expression of AtPHO1;H10, a member of the Arabidopsis (Arabidopsis thaliana) PHO1 gene family, is strongly induced following numerous abiotic and biotic stresses, including wounding, dehydration, cold, salt, and pathogen attack. AtPHO1;H10 expression by wounding was localized to the cells in the close vicinity of the wound site. AtPHO1;H10 expression was increased by application of the jasmonic acid (JA) precursor 12-oxo-phytodienoic acid (OPDA), but not by JA or coronatine. Surprisingly, induction of AtPHO1;H10 by OPDA was dependent on the presence of CORONATINE INSENSITIVE1 (COI1). The induction of AtPHO1;H10 expression by wounding and dehydration was dependent on COI1 and was comparable in both the wild type and the OPDA reductase 3-deficient (opr3) mutant. In contrast, induction of AtPHO1;H10 expression by exogenous abscisic acid (ABA) was independent of the presence of either OPDA or COI1, but was strongly decreased in the ABA-insensitive mutant abi1-1. The involvement of the ABA pathway in regulating AtPHO1;H10 was distinct between wounding and dehydration, with induction of AtPHO1;H10 by wounding being comparable to wild type in the ABA-deficient mutant aba1-3 and abi1-1, whereas a strong reduction in AtPHO1;H10 expression occurred in aba1-3 and abi1-1 following dehydration. Together, these results reveal that OPDA can modulate gene expression via COI1 in a manner distinct from JA, and independently from ABA. Furthermore, the implication of the ABA pathway in coregulating AtPHO1;H10 expression is dependent on the abiotic stress applied, being weak under wounding but strong upon dehydration
Resumo:
The amino acid sequence of mouse brain beta spectrin (beta fodrin), deduced from the nucleotide sequence of complementary DNA clones, reveals that this non-erythroid beta spectrin comprises 2363 residues, with a molecular weight of 274,449 Da. Brain beta spectrin contains three structural domains and we suggest the position of several functional domains including f-actin, synapsin I, ankyrin and spectrin self association sites. Analysis of deduced amino acid sequences indicated striking homology and similar structural characteristics of brain beta spectrin repeats beta 11 and beta 12 to globins. In vitro analysis has demonstrated that heme is capable of specific attachment to brain spectrin, suggesting possible new functions in electron transfer, oxygen binding, nitric oxide binding or heme scavenging.
Resumo:
Scaffold materials should favor cell attachment and proliferation, and provide designable 3D structures with appropriate mechanical strength. Collagen matrices have proven to be beneficial scaffolds for tissue regeneration. However, apart from small intestinal submucosa, they offer a limited mechanical strength even if crosslinking can enhance their mechanical properties. A more cell-friendly way to increase material strength is to combine synthetic polymer meshes with plastic compressed collagen gels. This work describes the potential of plastic compressed collagen-poly(lactic acid-co-ɛ-caprolactone) (PLAC) hybrids as scaffolds for bladder tissue regeneration. Human bladder smooth muscle and urothelial cells were cultured on and inside collagen-PLAC hybrids in vitro. Scaffolds were analyzed by electron microscopy, histology, immunohistochemistry, and AlamarBlue assay. Both cell types proliferated in and on the hybrid, forming dense cell layers on top after two weeks. Furthermore, hybrids were implanted subcutaneously in the backs of nude mice. Host cell infiltration, scaffold degradation, and the presence of the seeded bladder cells were analyzed. Hybrids showed a lower inflammatory reaction in vivo than PLAC meshes alone, and first signs of polymer degradation were visible at six months. Collagen-PLAC hybrids have potential for bladder tissue regeneration, as they show efficient cell seeding, proliferation, and good mechanical properties.
Resumo:
PURPOSE This double-blind, multicenter trial compared the efficacy and safety of a single daily oral dose of moxifloxacin with oral combination therapy in low-risk febrile neutropenic patients with cancer. PATIENTS AND METHODS Inclusion criteria were cancer, febrile neutropenia, low risk of complications as predicted by a Multinational Association for Supportive Care in Cancer (MASCC) score > 20, ability to swallow, and ≤ one single intravenous dose of empiric antibiotic therapy before study drug treatment initiation. Early discharge was encouraged when a set of predefined criteria was met. Patients received either moxifloxacin (400 mg once daily) monotherapy or oral ciprofloxacin (750 mg twice daily) plus amoxicillin/clavulanic acid (1,000 mg twice daily). The trial was designed to show equivalence of the two drug regimens in terms of therapy success, defined as defervescence and improvement in clinical status during study drug treatment (< 10% difference). Results Among the 333 patients evaluated in an intention-to-treat analysis, therapy success was observed in 80% of the patients administered moxifloxacin and in 82% of the patients administered combination therapy (95% CI for the difference, -10% to 8%, consistent with equivalence). Minor differences in tolerability, safety, and reasons for failure were observed. More than 50% of the patients in the two arms were discharged on protocol therapy, with 5% readmissions among those in either arm. Survival was similar (99%) in both arms. CONCLUSION Monotherapy with once daily oral moxifloxacin is efficacious and safe in low-risk febrile neutropenic patients identified with the help of the MASCC scoring system, discharged early, and observed as outpatients.
Resumo:
Summary : During vertebrate embryonic development, the endoderm gives rise to the digestive tract and associated organs such as thyroid, lung, liver and pancreas. Earlier studies have shown that extracellular signals coming from the lateral plate mesoderm pattern the endoderm along the antero-posterior axis specifying different organ primordia. An early sign of patterning is the expression of organ-specific genes in restricted endoderm domains. In this study, we focused on the role of the retinoic acid (RA) signaling pathway in the regionalization of the future gut tube along the main body axis. We show that the RA-synthesizing enzyme Raldh2 is expressed in mesoderm close to the endoderm during gastrulation and during somitogenesis. During the same period, all retinoic acid receptors (RARs), which directly activate gene transcription, are expressed in endoderm suggesting that endoderm can be responsive to RA. Activation or inhibition of RA signaling was achieved by adding RA or RAR inhibitors tither on beads or in the medium to cultured chick embryos. Branchial arch (BA) endoderm markers were shifted posteriorly upon depletion of RA at gastrulation, but were not shifted after this stage. Conversely, exposure to exogenous RA repressed the most-anterior BA markers and shifted more posterior BA markers anteriorly. This suggests that graded levels of RA activity in the foregut define gene boundaries and expression levels. The posterior foregut and midget markers Pdxl and CdxA require RA for their expression, but elevated RA does not shift their expression domain along the antero-posterior axis. In addition, we investigated if RA signaling pathway interacts with other signaling pathways to pattern the endoderm. Although both RA and FGFs block anterior foregut marker expression, our experiments suggest that FGF signaling does not depend on RA in anterior endoderm. To validate our chick data in mammalians and evaluate whether RA acts directly on endoderm, we have further generated a conditional loss-of-function system in the mouse, which is still under examination.
Resumo:
BACKGROUND: A concentrate for bicarbonate haemodialysis acidified with citrate instead of acetate has been marketed in recent years. The small amount of citrate used (one-fifth of the concentration adopted in regional anticoagulation) protects against intradialyser clotting while minimally affecting the calcium concentration. The aim of this study was to compare the impact of citrate- and acetate-based dialysates on systemic haemodynamics, coagulation, acid-base status, calcium balance and dialysis efficiency. METHODS: In 25 patients who underwent a total of 375 dialysis sessions, an acetate dialysate (A) was compared with a citrate dialysate with (C+) or without (C) calcium supplementation (0.25 mmol/L) in a randomised single-blind cross-over study. Systemic haemodynamics were evaluated using pulse-wave analysis. Coagulation, acid-base status, calcium balance and dialysis efficiency were assessed using standard biochemical markers. RESULTS: Patients receiving the citrate dialysate had significantly lower systolic blood pressure (BP) (-4.3 mmHg, p < 0.01) and peripheral resistances (PR) (-51 dyne.sec.cm-5, p < 0.001) while stroke volume was not increased. In hypertensive patients there was a substantial reduction in BP (-7.8 mmHg, p < 0.01). With the C+ dialysate the BP gap was less pronounced but the reduction in PR was even greater (-226 dyne.sec.cm-5, p < 0.001). Analyses of the fluctuations in PR and of subjective tolerance suggested improved haemodynamic stability with the citrate dialysate. Furthermore, an increase in pre-dialysis bicarbonate and a decrease in pre-dialysis BUN, post-dialysis phosphate and ionised calcium were noted. Systemic coagulation activation was not influenced by citrate. CONCLUSION: The positive impact on dialysis efficiency, acid-base status and haemodynamics, as well as the subjective tolerance, together indicate that citrate dialysate can significantly contribute to improving haemodialysis in selected patients.
Resumo:
BACKGROUND: The prevalence of hyperuricemia has rarely been investigated in developing countries. The purpose of the present study was to investigate the prevalence of hyperuricemia and the association between uric acid levels and the various cardiovascular risk factors in a developing country with high average blood pressures (the Seychelles, Indian Ocean, population mainly of African origin). METHODS: This cross-sectional health examination survey was based on a population random sample from the Seychelles. It included 1011 subjects aged 25 to 64 years. Blood pressure (BP), body mass index (BMI), waist circumference, waist-to-hip ratio, total and HDL cholesterol, serum triglycerides and serum uric acid were measured. Data were analyzed using scatterplot smoothing techniques and gender-specific linear regression models. RESULTS: The prevalence of a serum uric acid level >420 micromol/L in men was 35.2% and the prevalence of a serum uric acid level >360 micromol/L was 8.7% in women. Serum uric acid was strongly related to serum triglycerides in men as well as in women (r = 0.73 in men and r = 0.59 in women, p < 0.001). Uric acid levels were also significantly associated but to a lesser degree with age, BMI, blood pressure, alcohol and the use of antihypertensive therapy. In a regression model, triglycerides, age, BMI, antihypertensive therapy and alcohol consumption accounted for about 50% (R2) of the serum uric acid variations in men as well as in women. CONCLUSIONS: This study shows that the prevalence of hyperuricemia can be high in a developing country such as the Seychelles. Besides alcohol consumption and the use of antihypertensive therapy, mainly diuretics, serum uric acid is markedly associated with parameters of the metabolic syndrome, in particular serum triglycerides. Considering the growing incidence of obesity and metabolic syndrome worldwide and the potential link between hyperuricemia and cardiovascular complications, more emphasis should be put on the evolving prevalence of hyperuricemia in developing countries.
Resumo:
Vertebral and metaphyseal dysplasia, spasticity with cerebral calcifications, and strong predisposition to autoimmune diseases are the hallmarks of the genetic disorder spondyloenchondrodysplasia. We mapped a locus in five consanguineous families to chromosome 19p13 and identified mutations in ACP5, which encodes tartrate-resistant phosphatase (TRAP), in 14 affected individuals and showed that these mutations abolish enzyme function in the serum and cells of affected individuals. Phosphorylated osteopontin, a protein involved in bone reabsorption and in immune regulation, accumulates in serum, urine and cells cultured from TRAP-deficient individuals. Case-derived dendritic cells exhibit an altered cytokine profile and are more potent than matched control cells in stimulating allogeneic T cell proliferation in mixed lymphocyte reactions. These findings shed new light on the role of osteopontin and its regulation by TRAP in the pathogenesis of common autoimmune disorders.
Resumo:
BACKGROUND AND OBJECTIVE: Protease inhibitors are highly bound to orosomucoid (ORM) (alpha1-acid glycoprotein), an acute-phase plasma protein encoded by 2 polymorphic genes, which may modulate their disposition. Our objective was to determine the influence of ORM concentration and phenotype on indinavir, lopinavir, and nelfinavir apparent clearance (CL(app)) and cellular accumulation. Efavirenz, mainly bound to albumin, was included as a control drug. METHODS: Plasma and cells samples were collected from 434 human immunodeficiency virus-infected patients. Total plasma and cellular drug concentrations and ORM concentrations and phenotypes were determined. RESULTS: Indinavir CL(app) was strongly influenced by ORM concentration (n = 36) (r2 = 0.47 [P = .00004]), particularly in the presence of ritonavir (r2 = 0.54 [P = .004]). Lopinavir CL(app) was weakly influenced by ORM concentration (n = 81) (r2 = 0.18 [P = .0001]). For both drugs, the ORM1 S variant concentration mainly explained this influence (r2 = 0.55 [P = .00004] and r2 = 0.23 [P = .0002], respectively). Indinavir CL(app) was significantly higher in F1F1 individuals than in F1S and SS patients (41.3, 23.4, and 10.3 L/h [P = .0004] without ritonavir and 21.1, 13.2, and 10.1 L/h [P = .05] with ritonavir, respectively). Lopinavir cellular exposure was not influenced by ORM abundance and phenotype. Finally, ORM concentration or phenotype did not influence nelfinavir (n = 153) or efavirenz (n = 198) pharmacokinetics. CONCLUSION: ORM concentration and phenotype modulate indinavir pharmacokinetics and, to a lesser extent, lopinavir pharmacokinetics but without influencing their cellular exposure. This confounding influence of ORM should be taken into account for appropriate interpretation of therapeutic drug monitoring results. Further studies are needed to investigate whether the measure of unbound drug plasma concentration gives more meaningful information than total drug concentration for indinavir and lopinavir.
Resumo:
BACKGROUND: The relation of serum uric acid (SUA) with systemic inflammation has been little explored in humans and results have been inconsistent. We analyzed the association between SUA and circulating levels of interleukin-6 (IL-6), interleukin-1beta (IL-1beta), tumor necrosis factor- alpha (TNF-alpha) and C-reactive protein (CRP). METHODS AND FINDINGS: This cross-sectional population-based study conducted in Lausanne, Switzerland, included 6085 participants aged 35 to 75 years. SUA was measured using uricase-PAP method. Plasma TNF-alpha, IL-1beta and IL-6 were measured by a multiplexed particle-based flow cytometric assay and hs-CRP by an immunometric assay. The median levels of SUA, IL-6, TNF-alpha, CRP and IL-1beta were 355 micromol/L, 1.46 pg/mL, 3.04 pg/mL, 1.2 mg/L and 0.34 pg/mL in men and 262 micromol/L, 1.21 pg/mL, 2.74 pg/mL, 1.3 mg/L and 0.45 pg/mL in women, respectively. SUA correlated positively with IL-6, TNF-alpha and CRP and negatively with IL-1beta (Spearman r: 0.04, 0.07, 0.20 and 0.05 in men, and 0.09, 0.13, 0.30 and 0.07 in women, respectively, P<0.05). In multivariable analyses, SUA was associated positively with CRP (beta coefficient +/- SE = 0.35+/-0.02, P<0.001), TNF-alpha (0.08+/-0.02, P<0.001) and IL-6 (0.10+/-0.03, P<0.001), and negatively with IL-1beta (-0.07+/-0.03, P = 0.027). Upon further adjustment for body mass index, these associations were substantially attenuated. CONCLUSIONS: SUA was associated positively with IL-6, CRP and TNF-alpha and negatively with IL-1beta, particularly in women. These results suggest that uric acid contributes to systemic inflammation in humans and are in line with experimental data showing that uric acid triggers sterile inflammation.
Resumo:
ATP-gated P2X receptors and acid-sensing ion channels are two distinct ligand-gated ion channels that assemble into trimers. They are involved in many important physiological functions such as pain sensation and are recognized as important therapeutic targets. They have unrelated primary structures and respond to different ligands (ATP and protons) and are thus considered as two different ion channels. As a consequence, comparisons of the biophysical properties and underlying mechanisms have only been rarely made between these two channels. However, the recent determination of their molecular structures by X-ray crystallography has revealed unexpected parallels in the architecture of the two pores, providing a basis for possible functional analogies. In this review, we analyze the structural and functional similarities that are shared by these trimeric ion channels, and we outline key unanswered questions that, if addressed experimentally, may help us to elucidate how two unrelated ion channels have adopted a similar fold of the pore.
Resumo:
The flux of fatty acids toward beta-oxidation was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate synthesis in the peroxisome from the polymerization, by a bacterial polyhydroxyalkanoate synthase, of the beta-oxidation intermediates 3-hydroxyacyl-CoAs. Synthesis of polyhydroxyalkanoate was dependent on the beta-oxidation enzymes acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase multifunctional protein, which are involved in generating 3-hydroxyacyl-CoAs, and on the peroxin PEX5, which is involved in the import of proteins into the peroxisome. In wild type cells grown in media containing fatty acids, the polyhydroxyalkanoate monomer composition was largely influenced by the nature of the external fatty acid, such that even-chain monomers are generated from oleic acid and odd-chain monomers are generated from heptadecenoic acid. In contrast, polyhydroxyalkanoate containing predominantly 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate was synthesized in a mutant deficient in the peroxisomal 3-ketothiolase (fox3 Delta 0) growing either on oleic acid or heptadecenoic acid as well as in wild type and fox3 Delta 0 mutants grown on glucose or raffinose, indicating that 3-hydroxyacyl-CoAs used for polyhydroxyalkanoate synthesis were generated from the degradation of intracellular short- and medium-chain fatty acids by the beta-oxidation cycle. Inhibition of fatty acid biosynthesis with cerulenin blocked the synthesis of polyhydroxyalkanoate from intracellular fatty acids but still enabled the use of extracellular fatty acids for polymer production. Mutants affected in the synthesis of lipoic acid showed normal polyhydroxyalkanoate synthesis capacity. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed toward the peroxisomal beta-oxidation pathway.
Resumo:
Levels of the enzymes that produce wound response mediators have to be controlled tightly in unwounded tissues. The Arabidopsis (Arabidopsis thaliana) fatty acid oxygenation up-regulated8 (fou8) mutant catalyzes high rates of alpha -linolenic acid oxygenation and has higher than wild-type levels of the alpha -linolenic acid-derived wound response mediator jasmonic acid (JA) in undamaged leaves. fou8 produces a null allele in the gene SAL1 (also known as FIERY1 or FRY1). Overexpression of the wild-type gene product had the opposite effect of the null allele, suggesting a regulatory role of SAL1 acting in JA synthesis. The biochemical phenotypes in fou8 were complemented when the yeast (Saccharomyces cerevisiae) sulfur metabolism 3'(2'), 5'-bisphosphate nucleotidase MET22 was targeted to chloroplasts in fou8. The data are consistent with a role of SAL1 in the chloroplast-localized dephosphorylation of 3'-phospho-5'-adenosine phosphosulfate to 5'-adenosine phosphosulfate or in a closely related reaction (e.g. 3',5'-bisphosphate dephosphorylation). Furthermore, the fou8 phenotype was genetically suppressed in a triple mutant (fou8 apk1 apk2) affecting chloroplastic 3'-phospho-5'-adenosine phosphosulfate synthesis. These results show that a nucleotide component of the sulfur futile cycle regulates early steps of JA production and basal JA levels.
Resumo:
Arabidopsis thaliana (L.) Heynh. expressing the Crepis palaestina (L.) linoleic acid delta12-epoxygenase in its developing seeds typically accumulates low levels of vernolic acid (12,13-epoxy-octadec-cis-9-enoic acid) in comparison to levels found in seeds of the native C. palaestina. In order to determine some of the factors limiting the accumulation of this unusual fatty acid, we have examined the effects of increasing the availability of linoleic acid (9cis, 12cis-octadecadienoic acid), the substrate of the delta12-epoxygenase, on the quantity of epoxy fatty acids accumulating in transgenic A. thaliana. The addition of linoleic acid to liquid cultures of transgenic plants expressing the delta12-epoxygenase under the control of the cauliflower mosaic virus 35S promoter increased the amount of vernolic acid in vegetative tissues by 2.8-fold. In contrast, the addition to these cultures of linoelaidic acid (9trans, 12trans-octadecadienoic acid), which is not a substrate of the delta12-epoxygenase, resulted in a slight decrease in vernolic acid accumulation. Expression of the delta12-epoxygenase under the control of the napin promoter in the A. thaliana triple mutant fad3/fad7-1/fad9, which is deficient in the synthesis of tri-unsaturated fatty acids and has a 60% higher level of linoleic acid than the wild type, was found to increase the average vernolic acid content of the seeds by 55% compared to the expression of the delta12-epoxygenase in a wild-type background. Together, these results reveal that the availability of linoleic acid is an important factor affecting the synthesis of epoxy fatty acid in transgenic plants.
Resumo:
BACKGROUND: Limited information exists regarding the association between serum uric acid (SUA) and psychiatric disorders. We explored the relationship between SUA and subtypes of major depressive disorder (MDD) and specific anxiety disorders. Additionally, we examined the association of SLC2A9 rs6855911 variant with anxiety disorders. METHODS: We conducted a cross-sectional analysis on 3,716 individuals aged 35-66 years previously selected for the population-based CoLaus survey and who agreed to undergo further psychiatric evaluation. SUA was measured using uricase-PAP method. The French translation of the semi-structured Diagnostic Interview for Genetic Studies was used to establish lifetime and current diagnoses of depression and anxiety disorders according to the DSM-IV criteria. RESULTS: Men reported significantly higher levels of SUA compared to women (357±74 µmol/L vs. 263±64 µmol/L). The prevalence of lifetime and current MDD was 44% and 18% respectively while the corresponding estimates for any anxiety disorders were 18% and 10% respectively. A quadratic hockey-stick shaped curve explained the relationship between SUA and social phobia better than a linear trend. However, with regards to the other specific anxiety disorders and other subtypes of MDD, there was no consistent pattern of association. Further analyses using SLC2A9 rs6855911 variant, known to be strongly associated with SUA, supported the quadratic relationship observed between SUA phenotype and social phobia. CONCLUSIONS: A quadratic relationship between SUA and social phobia was observed consistent with a protective effect of moderately elevated SUA on social phobia, which disappears at higher concentrations. Further studies are needed to confirm our observations.