133 resultados para local sequence alignment problem
Resumo:
A variety of cellular proteins has the ability to recognize DNA lesions induced by the anti-cancer drug cisplatin, with diverse consequences on their repair and on the therapeutic effectiveness of this drug. We report a novel gene involved in the cell response to cisplatin in vertebrates. The RDM1 gene (for RAD52 Motif 1) was identified while searching databases for sequences showing similarities to RAD52, a protein involved in homologous recombination and DNA double-strand break repair. Ablation of RDM1 in the chicken B cell line DT40 led to a more than 3-fold increase in sensitivity to cisplatin. However, RDM1-/- cells were not hypersensitive to DNA damages caused by ionizing radiation, UV irradiation, or the alkylating agent methylmethane sulfonate. The RDM1 protein displays a nucleic acid binding domain of the RNA recognition motif (RRM) type. By using gel-shift assays and electron microscopy, we show that purified, recombinant chicken RDM1 protein interacts with single-stranded DNA as well as double-stranded DNA, on which it assembles filament-like structures. Notably, RDM1 recognizes DNA distortions induced by cisplatin-DNA adducts in vitro. Finally, human RDM1 transcripts are abundant in the testis, suggesting a possible role during spermatogenesis.
Resumo:
The death-inducing receptor Fas is activated when cross-linked by the type II membrane protein Fas ligand (FasL). When human soluble FasL (sFasL, containing the extracellular portion) was expressed in human embryo kidney 293 cells, the three N-linked glycans of each FasL monomer were found to be essential for efficient secretion. Based on the structure of the closely related lymphotoxin alpha-tumor necrosis factor receptor I complex, a molecular model of the FasL homotrimer bound to three Fas molecules was generated using knowledge-based protein modeling methods. Point mutations of amino acid residues predicted to affect the receptor-ligand interaction were introduced at three sites. The F275L mutant, mimicking the loss of function murine gld mutation, exhibited a high propensity for aggregation and was unable to bind to Fas. Mutants P206R, P206D, and P206F displayed reduced cytotoxicity toward Fas-positive cells with a concomitant decrease in the binding affinity for the recombinant Fas-immunoglobulin Fc fusion proteins. Although the cytotoxic activity of mutant Y218D was unaltered, mutant Y218R was inactive, correlating with the prediction that Tyr-218 of FasL interacts with a cluster of three basic amino acid side chains of Fas. Interestingly, mutant Y218F could induce apoptosis in murine, but not human cells.
Resumo:
Chromatin state variation at gene regulatory elements is abundant across individuals, yet we understand little about the genetic basis of this variability. Here, we profiled several histone modifications, the transcription factor (TF) PU.1, RNA polymerase II, and gene expression in lymphoblastoid cell lines from 47 whole-genome sequenced individuals. We observed that distinct cis-regulatory elements exhibit coordinated chromatin variation across individuals in the form of variable chromatin modules (VCMs) at sub-Mb scale. VCMs were associated with thousands of genes and preferentially cluster within chromosomal contact domains. We mapped strong proximal and weak, yet more ubiquitous, distal-acting chromatin quantitative trait loci (cQTL) that frequently explain this variation. cQTLs were associated with molecular activity at clusters of cis-regulatory elements and mapped preferentially within TF-bound regions. We propose that local, sequence-independent chromatin variation emerges as a result of genetic perturbations in cooperative interactions between cis-regulatory elements that are located within the same genomic domain.
Resumo:
One major methodological problem in analysis of sequence data is the determination of costs from which distances between sequences are derived. Although this problem is currently not optimally dealt with in the social sciences, it has some similarity with problems that have been solved in bioinformatics for three decades. In this article, the authors propose an optimization of substitution and deletion/insertion costs based on computational methods. The authors provide an empirical way of determining costs for cases, frequent in the social sciences, in which theory does not clearly promote one cost scheme over another. Using three distinct data sets, the authors tested the distances and cluster solutions produced by the new cost scheme in comparison with solutions based on cost schemes associated with other research strategies. The proposed method performs well compared with other cost-setting strategies, while it alleviates the justification problem of cost schemes.
Resumo:
In this paper we propose a stabilized conforming finite volume element method for the Stokes equations. On stating the convergence of the method, optimal a priori error estimates in different norms are obtained by establishing the adequate connection between the finite volume and stabilized finite element formulations. A superconvergence result is also derived by using a postprocessing projection method. In particular, the stabilization of the continuous lowest equal order pair finite volume element discretization is achieved by enriching the velocity space with local functions that do not necessarily vanish on the element boundaries. Finally, some numerical experiments that confirm the predicted behavior of the method are provided.
Resumo:
The detection of latent fingermarks on thermal papers proves to be particularly challenging because the application of conventional detection techniques may turn the sample dark grey or black, thus preventing the observation of fingermarks. Various approaches aiming at avoiding or solving this problem have been suggested. However, in view of the many propositions available in the literature, it gets difficult to choose the most advantageous method and to decide which processing sequence should be followed when dealing with a thermal paper. In this study, 19 detection techniques adapted to the processing of thermal papers were assessed individually and then were compared to each other. An updated processing sequence, assessed through a pseudo-operational test, is suggested.
Resumo:
We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.
Resumo:
Black-blood fast spin-echo imaging is a powerful technique for the evaluation of cardiac anatomy. To avoid fold-over artifacts, using a sufficiently large field of view in phase-encoding direction is mandatory. The related oversampling affects scanning time and respiratory chest motion artifacts are commonly observed. The excitation of a volume that exclusively includes the heart without its surrounding structures may help to improve scan efficiency and minimize motion artifacts. Therefore, and by building on previously reported inner-volume approach, the combination of a black-blood fast spin-echo sequence with a two-dimensionally selective radiofrequency pulse is proposed for selective "local excitation" small field of view imaging of the heart. This local excitation technique has been developed, implemented, and tested in phantoms and in vivo. With this method, small field of view imaging of a user-specified region in the human thorax is feasible, scanning becomes more time efficient, motion artifacts can be minimized, and additional flexibility in the choice of imaging parameters can be exploited.
Resumo:
Introduction Lesion detection in multiple sclerosis (MS) is an essential part of its clinical diagnosis. In addition, radiological characterisation of MS lesions is an important research field that aims at distinguishing different MS types, monitoring drug response and prognosis. To date, various MR protocols have been proposed to obtain optimal lesion contrast for early and comprehensive diagnosis of the MS disease. In this study, we compare the sensitivity of five different MR contrasts for lesion detection: (i) the DIR sequence (Double Inversion Recovery, [4]), (ii) the Dark-fluid SPACE acquisition schemes, a 3D variant of a 2D FLAIR sequence [1], (iii) the MP2RAGE [2], an MP-RAGE variant that provides homogeneous T1 contrast and quantitative T1-values, and the sequences currently used for clinical MS diagnosis (2D FLAIR, MP-RAGE). Furthermore, we investigate the T1 relaxation times of cortical and sub-cortical regions in the brain hemispheres and the cerebellum at 3T. Methods 10 early-stage female MS patients (age: 31.64.7y; disease duration: 3.81.9y; disability score, EDSS: 1.80.4) and 10 healthy controls (age and gender-matched: 31.25.8y) were included in the study after obtaining informed written consent according to the local ethic protocol. All experiments were performed at 3T (Magnetom Trio a Tim System, Siemens, Germany) using a 32-channel head coil [5]. The imaging protocol included the following sequences, (all except for axial FLAIR 2D with 1x1x1.2 mm3 voxel and 256x256x160 matrix): DIR (TI1/TI2/TR XX/3652/10000 ms, iPAT=2, TA 12:02 min), MP-RAGE (TI/TR 900/2300 ms, iPAT=3, TA 3:47 min); MP2RAGE (TI1/TI2/TR 700/2500/5000 ms, iPAT=3, TA 8:22 min, cf. [2]); 3D FLAIR SPACE (only for patient 4-6, TI/TR 1800/5000 ms, iPAT=2, TA=5;52 min, cf. [1]); Axial FLAIR (0.9x0.9x2.5 mm3, 256x256x44 matrix, TI/TR 2500/9000 ms, iPAT=2, TA 4:05 min). Lesions were identified by two experienced neurologist and radiologist, manually contoured and assigned to regional locations (s. table 1). Regional lesion masks (RLM) from each contrast were compared for number and volumes of lesions. In addition, RLM were merged in a single "master" mask, which represented the sum of the lesions of all contrasts. T1 values were derived for each location from this mask for patients 5-10 (3D FLAIR contrast was missing for patient 1-4). Results & Discussion The DIR sequence appears the most sensitive for total lesions count, followed by the MP2RAGE (table 1). The 3D FLAIR SPACE sequence turns out to be more sensitive than the 2D FLAIR, presumably due to reduced partial volume effects. Looking for sub-cortical hemispheric lesions, the DIR contrast appears to be equally sensitive to the MP2RAGE and SPACE, but most sensitive for cerebellar MS plaques. The DIR sequence is also the one that reveals cortical hemispheric lesions best. T1 relaxation times at 3T in the WM and GM of the hemispheres and the cerebellum, as obtained with the MP2RAGE sequence, are shown in table 2. Extending previous studies, we confirm overall longer T1-values in lesion tissue and higher standard deviations compared to the non-lesion tissue and control tissue in healthy controls. We hypothesize a biological (different degree of axonal loss and demyelination) rather than technical origin. Conclusion In this study, we applied 5 MR contrasts including two novel sequences to investigate the contrast of highest sensitivity for early MS diagnosis. In addition, we characterized for the first time the T1 relaxation time in cortical and sub-cortical regions of the hemispheres and the cerebellum. Results are in agreement with previous publications and meaningful biological interpretation of the data.
Resumo:
BACKGROUND: A growing number of patients with chronic hepatitis B is being treated for extended periods with nucleoside and/or nucleotide analogs. In this context, antiviral resistance represents an increasingly common and complex issue. METHODS: Mutations in the hepatitis B virus (HBV) reverse transcriptase (rt) gene and viral genotypes were determined by direct sequencing of PCR products and alignment with reference sequences deposited in GenBank. RESULTS: Plasma samples from 60 patients with chronic hepatitis B were analyzed since March 2009. The predominant mutation pattern identified in patients with virological breakthrough was rtM204V/I ± different compensatory mutations, conferring resistance to L-nucleosides (lamivudine, telbivudine, emtricitabine) and predisposing to entecavir resistance (n = 18). Complex mutation patterns with a potential for multidrug resistance were identified in 2 patients. Selection of a fully entecavir resistant strain was observed in a patient exposed to lamivudine alone. Novel mutations were identified in 1 patient. Wild-type HBV was identified in 9 patients with suspected virological breakthrough, raising concerns about treatment adherence. No preexisting resistance mutations were identified in treatment-naïve patients (n = 13). Viral genome amplification and sequencing failed in 16 patients, of which only 2 had a documented HBV DNA > 1000 IU/ml. HBV genotypes were D in 28, A in 6, B in 4, C in 3 and E in 3 patients. Results will be updated in August 2010 and therapeutic implications discussed. CONCLUSIONS: With expanding treatment options and a growing number of patients exposed to nucleoside and/or nucleotide analogs, sequence-based HBV antiviral resistance testing is expected to become a cornerstone in the management of chronic hepatitis B.
Resumo:
DNA sequence variation has been associated with quantitative changes in molecular phenotypes such as gene expression, but its impact on chromatin states is poorly characterized. To understand the interplay between chromatin and genetic control of gene regulation, we quantified allelic variability in transcription factor binding, histone modifications, and gene expression within humans. We found abundant allelic specificity in chromatin and extensive local, short-range, and long-range allelic coordination among the studied molecular phenotypes. We observed genetic influence on most of these phenotypes, with histone modifications exhibiting strong context-dependent behavior. Our results implicate transcription factors as primary mediators of sequence-specific regulation of gene expression programs, with histone modifications frequently reflecting the primary regulatory event.
Resumo:
BACKGROUND: The aromatase inhibitor letrozole, as compared with tamoxifen, improves disease-free survival among postmenopausal women with receptor-positive early breast cancer. It is unknown whether sequential treatment with tamoxifen and letrozole is superior to letrozole therapy alone. METHODS: In this randomized, phase 3, double-blind trial of the treatment of hormone-receptor-positive breast cancer in postmenopausal women, we randomly assigned women to receive 5 years of tamoxifen monotherapy, 5 years of letrozole monotherapy, or 2 years of treatment with one agent followed by 3 years of treatment with the other. We compared the sequential treatments with letrozole monotherapy among 6182 women and also report a protocol-specified updated analysis of letrozole versus tamoxifen monotherapy in 4922 women. RESULTS: At a median follow-up of 71 months after randomization, disease-free survival was not significantly improved with either sequential treatment as compared with letrozole alone (hazard ratio for tamoxifen followed by letrozole, 1.05; 99% confidence interval [CI], 0.84 to 1.32; hazard ratio for letrozole followed by tamoxifen, 0.96; 99% CI, 0.76 to 1.21). There were more early relapses among women who were assigned to tamoxifen followed by letrozole than among those who were assigned to letrozole alone. The updated analysis of monotherapy showed that there was a nonsignificant difference in overall survival between women assigned to treatment with letrozole and those assigned to treatment with tamoxifen (hazard ratio for letrozole, 0.87; 95% CI, 0.75 to 1.02; P=0.08). The rate of adverse events was as expected on the basis of previous reports of letrozole and tamoxifen therapy. CONCLUSIONS: Among postmenopausal women with endocrine-responsive breast cancer, sequential treatment with letrozole and tamoxifen, as compared with letrozole monotherapy, did not improve disease-free survival. The difference in overall survival with letrozole monotherapy and tamoxifen monotherapy was not statistically significant. (ClinicalTrials.gov number, NCT00004205.)
Genetic basis of adaptation in Arabidopsis thaliana: local adaptation at the seed dormancy QTL DOG1.
Resumo:
Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study delay of germination 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using F(ST) and Q(ST) comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although Q(ST) for seed dormancy is not different from F(ST) for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F(2) -populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of nosocomial infections worldwide. To differentiate reliably among S. aureus isolates, we recently developed double locus sequence typing (DLST) based on the analysis of partial sequences of clfB and spa genes. In the present study, we evaluated the usefulness of DLST for epidemiological investigations of MRSA by routinely typing 1242 strains isolated in Western Switzerland. Additionally, particular local and international collections were typed by pulsed field gel electrophoresis (PFGE) and DLST to check the compatibility of DLST with the results obtained by PFGE, and for international comparisons. Using DLST, we identified the major MRSA clones of Western Switzerland, and demonstrated the close relationship between local and international clones. The congruence of 88% between the major PFGE and DLST clones indicated that our results obtained by DLST were compatible with earlier results obtained by PFGE. DLST could thus easily be incorporated in a routine surveillance procedure. In addition, the unambiguous definition of DLST types makes this method more suitable than PFGE for long-term epidemiological surveillance. Finally, the comparison of the results obtained by DLST, multilocus sequence typing, PFGE, Staphylococcal cassette chromosome mec typing and the detection of Panton-Valentine leukocidin genes indicated that no typing scheme should be used on its own. It is only the combination of data from different methods that gives the best chance of describing precisely the epidemiology and phylogeny of MRSA.