120 resultados para enzymological properties
Resumo:
The closely related TNF family ligands B cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) serve in the generation and maintenance of mature B-lymphocytes. Both BAFF and APRIL assemble as homotrimers that bind and activate several receptors that they partially share. However, heteromers of BAFF and APRIL that occur in patients with autoimmune diseases are incompletely characterized. The N and C termini of adjacent BAFF or APRIL monomers are spatially close and can be linked to create single-chain homo- or hetero-ligands of defined stoichiometry. Similar to APRIL, heteromers consisting of one BAFF and two APRILs (BAA) bind to the receptors B cell maturation antigen (BCMA), transmembrane activator and CAML interactor (TACI) but not to the BAFF receptor (BAFFR). Heteromers consisting of one APRIL and two BAFF (ABB) bind to TACI and BCMA and weakly to BAFFR in accordance with the analysis of the receptor interaction sites in the crystallographic structure of ABB. Receptor binding correlated with activity in reporter cell line assays specific for BAFFR, TACI, or BCMA. Single-chain BAFF (BBB) and to a lesser extent single-chain ABB, but not APRIL or single-chain BAA, rescued BAFFR-dependent B cell maturation in BAFF-deficient mice. In conclusion, BAFF-APRIL heteromers of different stoichiometries have distinct receptor-binding properties and activities. Based on the observation that heteromers are less active than BAFF, we speculate that their physiological role might be to down-regulate BAFF activity.
Resumo:
Very large molecular systems can be calculated with the so called CNDOL approximate Hamiltonians that have been developed by avoiding oversimplifications and only using a priori parameters and formulas from the simpler NDO methods. A new diagonal monoelectronic term named CNDOL/21 shows great consistency and easier SCF convergence when used together with an appropriate function for charge repulsion energies that is derived from traditional formulas. It is possible to obtain a priori molecular orbitals and electron excitation properties after the configuration interaction of single excited determinants with reliability, maintaining interpretative possibilities even being a simplified Hamiltonian. Tests with some unequivocal gas phase maxima of simple molecules (benzene, furfural, acetaldehyde, hexyl alcohol, methyl amine, 2,5 dimethyl 2,4 hexadiene, and ethyl sulfide) ratify the general quality of this approach in comparison with other methods. The calculation of large systems as porphine in gas phase and a model of the complete retinal binding pocket in rhodopsin with 622 basis functions on 280 atoms at the quantum mechanical level show reliability leading to a resulting first allowed transition in 483 nm, very similar to the known experimental value of 500 nm of "dark state." In this very important case, our model gives a central role in this excitation to a charge transfer from the neighboring Glu(-) counterion to the retinaldehyde polyene chain. Tests with gas phase maxima of some important molecules corroborate the reliability of CNDOL/2 Hamiltonians.
Resumo:
NlmCategory="UNASSIGNED">This study is aimed at the determination of the measurement properties of the shoulder function B-B Score measured with a smartphone. This score measures the symmetry between sides of a power-related metric for two selected movements, with 100% representing perfect symmetry. Twenty healthy participants, 20 patients with rotator cuff conditions, 23 with fractures, 22 with capsulitis, and 23 with shoulder instabilities were measured twice across a six-month interval using the B-B Score and shoulder function questionnaires. The discriminative power, responsiveness, diagnostic power, concurrent validity, minimal detectable change (MDC), minimal clinically important improvement (MCII), and patient acceptable symptom state (PASS) were evaluated. Significant differences with the control group and significant baseline-six-month differences were found for the rotator cuff condition, fracture, and capsulitis patient groups. The B-B Score was responsive and demonstrated excellent diagnostic power, except for shoulder instability. The correlations with clinical scores were generally moderate to high, but lower for instability. The MDC was 18.1%, the MCII was 25.2%, and the PASS was 77.6. No floor effect was observed. The B-B Score demonstrated excellent measurement properties in populations with rotator cuff conditions, proximal humerus fractures, and capsulitis, and can thus be used as a routine test to evaluate those patients.
Resumo:
In the context of the publication of DSM-5, the Personality Inventory for DSM-5 (PID-5) has been proposed as a new dimensional assessment tool for personality disorders. This instrument includes a pool of 220 items organized around 25 facets included in a five-factor second-order domain structure. The examination of the replicability of the trait structure across methods and populations is of primary importance. In view of this need, the main objective of the current study was to validate the French version of the PID-5 among French-speaking adults from a European community sample (N=2,532). In particular, the assumption of unidimensionality of the 25 facet and the five domain scales was tested, as well as the extent to which the five-factor structure of the PID-5 and the DSM-5 personality trait hierarchical structure are replicated in the current sample. The results support the assumption of unidimensionality of both the facets and the domains. Exploratory factor and hierarchical analyses replicated the five-factor structure as initially proposed in the PID-5.
Resumo:
Six of 7 FXYD proteins have been shown to be tissue-specific modulators of Na,K-ATPase. In this study, we have identified two splice variants of human FXYD3, or Mat-8, in CaCo-2 cells. Short human FXYD3 has 72% sequence identity with mouse FXYD3, whereas long human FXYD3 is identical to short human FXYD3 but has a 26-amino acid insertion after the transmembrane domain. Short and long human FXYD3 RNAs and proteins are differentially expressed during differentiation of CaCo-2 cells. Long human FXYD3 is mainly expressed in nondifferentiated cells and short human FXYD3 in differentiated cells and both FXYD3 variants can be co-immunoprecipitated with a Na,K-ATPase antibody. In contrast to mouse FXYD3, which has two transmembrane domains for lack of cleavage of the signal peptide, human FXYD3 has a cleavable signal peptide and adopts a type I topology. After co-expression in Xenopus oocytes, both human FXYD3 variants associate stably only with Na,K-ATPase isozymes but not with H,K-ATPase or Ca-ATPase. Similar to mouse FXYD3, short human FXYD3 decreases the apparent K(+) and Na(+) affinity of Na,K-ATPase over a large range of membrane potentials. On the other hand, long human FXYD3 decreases the apparent K(+) affinity only at slightly negative and positive membrane potentials and increases the apparent Na(+) affinity of Na,K-ATPase. Finally, both short and long human FXYD3 induce a hyperpolarization activated current, similar to that induced by mouse FXYD3. Thus, we have characterized two human FXYD3 isoforms that are differentially expressed in differentiated and non-differentiated cells and show different functional properties.
Resumo:
The detailed in-vivo characterization of subcortical brain structures is essential not only to understand the basic organizational principles of the healthy brain but also for the study of the involvement of the basal ganglia in brain disorders. The particular tissue properties of basal ganglia - most importantly their high iron content, strongly affect the contrast of magnetic resonance imaging (MRI) images, hampering the accurate automated assessment of these regions. This technical challenge explains the substantial controversy in the literature about the magnitude, directionality and neurobiological interpretation of basal ganglia structural changes estimated from MRI and computational anatomy techniques. My scientific project addresses the pertinent need for accurate automated delineation of basal ganglia using two complementary strategies: ? Empirical testing of the utility of novel imaging protocols to provide superior contrast in the basal ganglia and to quantify brain tissue properties; ? Improvement of the algorithms for the reliable automated detection of basal ganglia and thalamus Previous research demonstrated that MRI protocols based on magnetization transfer (MT) saturation maps provide optimal grey-white matter contrast in subcortical structures compared with the widely used Tl-weighted (Tlw) images (Helms et al., 2009). Under the assumption of a direct impact of brain tissue properties on MR contrast my first study addressed the question of the mechanisms underlying the regional specificities effect of the basal ganglia. I used established whole-brain voxel-based methods to test for grey matter volume differences between MT and Tlw imaging protocols with an emphasis on subcortical structures. I applied a regression model to explain the observed grey matter differences from the regionally specific impact of brain tissue properties on the MR contrast. The results of my first project prompted further methodological developments to create adequate priors for the basal ganglia and thalamus allowing optimal automated delineation of these structures in a probabilistic tissue classification framework. I established a standardized workflow for manual labelling of the basal ganglia, thalamus and cerebellar dentate to create new tissue probability maps from quantitative MR maps featuring optimal grey-white matter contrast in subcortical areas. The validation step of the new tissue priors included a comparison of the classification performance with the existing probability maps. In my third project I continued investigating the factors impacting automated brain tissue classification that result in interpretational shortcomings when using Tlw MRI data in the framework of computational anatomy. While the intensity in Tlw images is predominantly
Resumo:
Resistance to semi-dry environments has been considered a crucial trait for superior growth and survival of strains used for bioaugmentation in contaminated soils. In order to compare water stress programmes, we analyse differential gene expression among three phylogenetically different strains capable of aromatic compound degradation: Arthrobacter chlorophenolicus A6, Sphingomonas wittichii RW1 and Pseudomonas veronii 1YdBTEX2. Standardized laboratory-induced water stress was imposed by shock exposure of liquid cultures to water potential decrease, induced either by addition of solutes (NaCl, solute stress) or by addition of polyethylene glycol (matric stress), both at absolute similar stress magnitudes and at those causing approximately similar decrease of growth rates. Genome-wide differential gene expression was recorded by micro-array hybridizations. Growth of P. veronii 1YdBTEX2 was the most sensitive to water potential decrease, followed by S. wittichii RW1 and A. chlorophenolicus A6. The number of genes differentially expressed under decreasing water potential was lowest for A. chlorophenolicus A6, increasing with increasing magnitude of the stress, followed by S. wittichii RW1 and P. veronii 1YdBTEX2. Gene inspection and gene ontology analysis under stress conditions causing similar growth rate reduction indicated that common reactions among the three strains included diminished expression of flagellar motility and increased expression of compatible solutes (which were strain-specific). Furthermore, a set of common genes with ill-defined function was found between all strains, including ABC transporters and aldehyde dehydrogenases, which may constitute a core conserved response to water stress. The data further suggest that stronger reduction of growth rate of P. veronii 1YdBTEX2 under water stress may be an indirect result of the response demanding heavy NADPH investment, rather than the presence or absence of a suitable stress defence mechanism per se.