206 resultados para enzymatic inhibition
Resumo:
The pro-inflammatory cytokine IL-1β has been shown to promote angiogenesis. It can have a neurotoxic or neuroprotective effect. Here, we have studied the expression of IL-1β in vivo and the effect of the IL-1 receptor antagonist on choroidal neovascularization (CNV) and retinal degeneration (RD). IL-1β expression significantly increased after laser injury (real time PCR) in C57BL/6 mice, in the C57BL/6 Cx3cr1(-/-) model of age-related macular degeneration (enzyme-linked immunoabsorbent assay), and in albino Wistar rats and albino BALB Cx3cr1(+/+) and Cx3cr1(-/-) mice (enzyme-linked immunoabsorbent assay) after light injury. IL-1β was localized to Ly6G-positive, Iba1-negative infiltrating neutrophils in laser-induced CNV as determined by IHC. IL-1 receptor antagonist treatment significantly inhibited CNV but did not affect Iba1-positive macrophage recruitment to the injury site. IL-1β significantly increased endothelial cell outgrowth in aortic ring assay independently of vascular endothelial growth factor, suggesting a direct effect of IL-1β on choroidal endothelial cell proliferation. Inhibition of IL-1β in light- and laser-induced RD models did not alter photoreceptor degeneration in Wistar rats, C57BL/6 mice, or RD-prone Cx3cr1(-/-) mice. Our results suggest that IL-1β inhibition might represent a valuable and safe alternative to inhibition of vascular endothelial growth factor in the control of CNV in the context of concomitant photoreceptor degeneration as observed in age-related macular degeneration.
Resumo:
PURPOSE: To investigate the ability of fibroblast growth factor (FGF) 2-saporin to prevent lens regrowth in the rabbit. METHODS: Chemically conjugated and genetically fused FGF2-saporin (made in Escherichia coli) were used. Extracapsular extraction of the lens was performed on the rabbit, and the cytotoxin either was injected directly into the capsule bag or was administered by FGF2-saporin-coated, heparin surface-modified (HSM) polymethylmethacrylate intraocular lenses. The potential of the conjugate was checked by slit lamp evaluation of capsular opacification and by measuring crystallin synthesis. Toxin diffusion and sites of toxin binding were assessed by immunohistochemistry. Possible toxicity was determined by histologic analysis of ocular tissues. RESULTS: FGF2-saporin effectively inhibited lens regrowth when it was injected directly into the capsular bag. However, high concentration of the toxin induced transient corneal edema and loss of pigment in the iris. Intraocular lenses coated with FGF2-saporin reduced lens regrowth and crystallin synthesis without any detectable clinical side effect. After implantation, FGF2-saporin was shown to have bound to the capsules and, to a lesser extent, to the iris; no histologic damage was found on ocular tissues as a result of implantation of drug-loaded HSM intraocular lenses. CONCLUSIONS: Chemically conjugated (FGF2-SAP) and genetically fused FGF2-saporin (rFGF2-SAP) bound to HSM intraocular lenses can prevent lens regrowth in the rabbit.
Resumo:
The development of motor activation and inhibition was compared in 6-to-12 year-olds. Children had to initiate or stop the externally paced movements of one hand, while maintaining that of the other hand. The time needed to perform the switching task (RT) and the spatio-temporal variables show different agerelated evolutions depending on the coordination pattern (inor anti-phase) and the type of transition (activation, selective inhibition, non selective inhibition) required. In the anti-phase mode, activation perturbs the younger subjects' responses while temporal and spatial stabilities transiently decrease around 9 years when activating in the in-phase mode. Aged-related changes differed between inhibition and activation in the antiphase mode, suggesting either the involvement of distinct neural networks or the existence of a single network that is reorganized. In contrast, stopping or adding one hand in the in-phase mode shows similar aged-related improvement. We suggest that selectively stopping or activating one arm during symmetrical coordination rely on the two faces of a common processing in which activation could be the release of inhibition
Resumo:
Abstract : Neonatal stroke occurs in 1 out of 4000 live births and usually leads to serious motor and cognitive disabilities. Ischemic brain injury results from a complex of pathophysiological events that evolve over space and time making it difficult to devise successful therapy. To date, there are no effective treatments for perinatal brain damage. Most clinical trials of neuroprotectaot drugs have failed because of their side-effects. For this reason it is important to find ways to target drugs specifically into the stressed cells. In this study we plan to contribute to the development of an efficient neuroprotective strategy against excitotoxic cell death in the neonate. In order to achieve this goal, several strategies were followed. A recently described phenomenon of induced endocytosis associated with excitotoxicity was more deeply investigated. As a simplified model we used dissociated cortical neurons exposed to an excitotoxic dose of NMDA, and we showed that this phenomenon depends on clathrin and dynamin. Using a model of neonatal focal cerebral ischemia, we demonstrated that the excitotoxicity-related endocytosis targets molecules such as TAT peptides into stressed neurons. These appear to be viable, raising the possibility of using this phenomenon as a doorway for neuroprotection. One part of the project was devoted to the study of the TAT-conjugated JNK inhibitory peptide, D-JNKI1. Adose-response study showed strong neuroprotection over a wide dose-range in the case of delayed administration (either intravenous or intraperitoneal). Since D-JNKI1 is aTAT-linked peptide, we investigated the role of its own NMDA-induced endocytosis in its neuroprotective efficacy. Furthermore, we showed that this endocytosis is JNK dependent, and that D-JNKI1 regulates its own uptake. We additionally studied the different types of cell death involved in a model of neonatal focal cerebral ischemia. Necrosis occurred rapidly in the center of the lesion whereas apoptosis and autophagic cell death occurred late at the lesion border. Inhibiting apoptosis was not protective, but use of autophagy inhibitor 3methyladenine provided a strong neuroprotection. Finally, combining two neuroprotectants that target different intracellular pathways was neuroprotective in a severe model of cerebral ischemia where neither of the drugs was efficient when administered individually. Résumé : L'ischémie néonatale connaît une incidence de 1 naissance sur 4000, entraînant généralement de sérieux dysfonctionnements moteurs et cognitifs. L'ischémie cérébrale résulte d'évènements physiopathologiques complexes qui évoluent dans l'espace et le temps rendant difficile la conception de thérapies efficaces. A l'heure actuelle, aucun traitement n'existe pour lutter contre les accidents vasculaires cérébraux qui se produisent autour de la naissance. La plupart des essais cliniques concernant des molécules neuroprotectrices ont échoué du fait de leurs effets secondaires néfastes. Pour cette raison, il est important de trouver des moyens de cibler les drogues dans les cellules stressées spécifiquement. Dans cette étude nous visons à participer au développement d'une stratégie neuroprotectrice efficace contre l'ischémie cérébrale chez le nouveau-né. Dans ce but, plusieurs stratégies ont été poursuivies. Un nouveau phénomène d'endocytose induite par un stimulus excitotoxique a été récemment décrit. Une partie de cette étude va consister à mieux comprendre ce phénomène. Pour céla, nous avons utilisé comme modèle d'étude simplifié des cultures dissociées de neurones corticaux exposées à une dose excitotoxique de NMDA. Nous avons ainsi montré que cette endocytose associée à l'excitotoxicité dépend de la clathrine et de la dynamine. A l'aide d'un modèle d'ischémie cérébrale focale chez le raton de 12 jours, nous avons démontré que cette endocytose induite par l'excitotoxicité permet de cibler des molécules diverses et en particulier les peptides TAT dans les neurones stressés. Ces neurones fortement endocytiques apparaissent comme étant encore viables, ouvrant la possibilité d'utiliser cette endocytose comme moyen d'entrée pour des molécules thérapeutiques. Une partie du projet a été consacrée à l'étude d'un inhibiteur de la voie JNK, couplé au TAT, appelé D-JNKI1. Des études de dose réponse du D-JNKI1 ont été réalisées chez l'animal, testant les effets d'une administration retardée en injection intraveineuse ou intra péritonéale. Ces études démontrent qu'une large gamme de dose permet d'obCenir une réduction de la taille de la lésion. Comme D-JNK11 est couplé au peptide TAT, nous avons étudié la contribution que sa propre endocytose lors de l'excitotoxicité apporte à ses effets protecteurs. Par ailleurs, nous avons montré que cette endocytose induite par l'excitotoxicité dépend de la voie de signalisation JNK et que D-JNK11 est donc capable de réguler sa propre entrée. Nous avons en parallèle étudié les différents types de mort cellulaires impliqués dans le développement de la lésion dans un modèle sévère d'ischémie cérébrale chez le raton nouveau-né. La mort cellulaire par nécrose se développe rapidement dans le centre de la lésion alors que les morts cellulaires par apoptose et autophagique vont apparaître plus tard et au bord de la lésion. Inhiber l'apoptose n'a pas permis de réduire la taille de la lésion alors que l'utilisation d'un inhibiteur d'autophagie, la 3-méthyladénine, procure une forte neuroprotection. Finalement, la combinaison de deux peptides qui ciblent différentes voies de signalisation intracellulaire permet d'obtenir une bonne protection dans le modèle d'ischémie sévère dans lequel aucun des deux peptides administré séparément n'a donné d'effets bénéfiques.
Resumo:
This study investigates the effects of digoxin, an inhibitor of the Na+ pump (Na(+)-K(+)-ATPase), on resting metabolic rate (RMR), respiratory quotient (RQ), and nutrient oxidation rate. Twelve healthy male subjects followed a double-blind protocol design and received either 1 mg/day digoxin or a placebo 2 days before indirect calorimetry measurements. Digoxin induced a 0.22 +/- 0.07 kJ/min or 3.8 +/- 1.5% (mean +/- SE, P = 0.01) decrease in RMR and a 0.40 +/- 0.13 kJ/min (P = 0.01) decrease in fat oxidation rate, whereas carbohydrate and protein oxidation rates did not change significantly. A dose-response relationship between serum digoxin and RQ was observed. These results suggest that digoxin reduces not only RMR but also fat oxidation rate by mechanisms that remain to be elucidated. Because a linkage and an association between genes coding the Na(+)-K(+)-ATPase and the RQ have been previously observed, the present demonstration of an effect of Na(+)-K(+)-ATPase inhibition on fat oxidation rate strengthens the concept that the activity of this enzyme may play a role in body weight regulation.
Resumo:
Background: We previously reported in schizophrenia patients a decreased level of glutathione ([GSH]), the principal non-protein antioxidant and redox regulator, both in cerebrospinal-fluid and prefrontal cortex. To identify possible genetic causation, we studied genes involved in GSH metabolism. Methods: Genotyping: mass spectrometry analysis of polymerase chain reaction (PCR) amplified DNA fragments purified from peripheral blood. Gene expression: real-time PCR of total RNA isolated from fibroblast cultures derived from skin of patients (DSM-IV) and healthy controls (DIGS). Results: Case-control association study of single nucleotide polymorphisms (SNP) from the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) modifier subunit (GCLM) was performed in two populations: Swiss (patients/controls: 40/31) and Danish (349/348). We found a strong association of SNP rs2301022 in GCLM gene (Danish: c2=3.2; P=0.001 after correction for multiple testing). Evidence for GCLM as a risk factor was confirmed in linkage study of NIMH families. Moreover, we observed a decrease in GCLM mRNA levels in patient fibroblasts, consistently with the association study. Interestingly, Dalton and collaborators reported in GCLM knock-out mice an increased feedback inhibition of GCL activity, resulting in 60% decrease of brain [GSH], a situation analogous to patients. These mice also exhibited an increased sensitivity to oxidative stress. Similarly, under oxidative stress conditions, GCL enzymatic activity was also decreased in patient fibroblasts. Conclusions: These results at the genetic and functional levels, combined with observations that GSH deficient models reveal morphological, electrophysiological, and behavioral anomalies analogous to those observed in patients, suggest that GCLM allelic variant is a vulnerability factor for schizophrenia.
Resumo:
The renin-angiotensin aldosterone system (RAAS) is central to the pathogenesis of cardiovascular disease. RAAS inhibition can reduce blood pressure, prevent target organ damage in hypertension and diabetes, and improve outcomes in patients with heart failure and/or myocardial infarction. This review presents the history of RAAS inhibition including a summary of key heart failure, myocardial infarction, hypertension and atrial fibrillation trials. Recent developments in RAAS inhibition are discussed including implementation and optimization of current drug therapies. Finally, ongoing clinical trials, opportunities for future trials and issues related to the barriers and approvability of novel RAAS inhibitors are highlighted.
Resumo:
J. Neurochem. (2010) 10.1111/j.1471-4159.2010.06705.x Abstract Retinal excitotoxicity is associated with retinal ischemia, and with glaucomatous and traumatic optic neuropathy. The present study investigates the role of c-Jun N-terminal kinase (JNK) activation in NMDA-mediated retinal excitotoxicity and determines whether neuroprotection can be obtained with the JNK pathway inhibitor, d-form of JNK-inhibitor 1 (d-JNKI-1). Young adult rats received intravitreal injections of 20 nmol NMDA, which caused extensive neuronal death in the inner nuclear and ganglion cell layers. This excitotoxicity was associated with strong activation of calpain, as revealed by fodrin cleavage, and of JNK. The cell-permeable peptide d-JNKI-1 was used to inhibit JNK. Within 40 min of its intravitreal injection, FITC-labeled d-JNKI-1 spread through the retinal ganglion cell layer into the inner nuclear layer and interfered with the NMDA-induced phosphorylation of JNK. Injections of unlabeled d-JNKI-1 gave unprecedentedly strong neuroprotection against cell death in both layers, lasting for at least 10 days. The NMDA-induced calpain-specific fodrin cleavage was likewise strongly inhibited by d-JNKI-1. Moreover the electroretinogram was partially preserved by d-JNKI-1. Thus, the JNK pathway is involved in NMDA-mediated retinal excitotoxicity and JNK inhibition by d-JNKI-1 provides strong neuroprotection as shown morphologically, biochemically and physiologically.
Resumo:
Abstract: Blocking tumor growth by targeting the tumor vasculature is a promising approach in cancer therapy. Both, disrupting tumor vessels as well as normalization of tumor vessel abnormalities have shown anti-cancer efficacy. A plethora of agents that act on the tumor vasculature have been developed; however, so far few have shown clinical benefits. Among the successful agents, inhibitors of the mammalian target of rapamycin (mTOR) are able to reduce tumor growth by targeting tumor vessels. mTOR inhibition exerts at least three different effects on the tumor vasculature. First, it reduces tumor angiogenesis. Second it normalizes the tumor vasculature and third, it promotes the formation of thrombosis in tumor vessels. The characterization of the molecular functions regulated by mTOR and of relevance to the tumor vasculature is therefore important in order to further identify biological mechanisms involved in the tumor vascular network as well as to improve the efficacy of these inhibitors. Here, we will first enumerate the evidences for the anti-angiogenic activities of mTOR inhibitors and describe the molecular mechanisms involved. We will further analyze the effects of mTOR inhibition on vascular normalization and also describe how mTOR inhibition promotes thrombosis formation specifically in tumor vessels. Finally, we will describe a new generation of mTOR inhibitors and examine their effects on the tumor vasculature
Resumo:
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that induces cancer cell death by apoptosis with some selectivity. TRAIL-induced apoptosis is mediated by the transmembrane receptors death receptor 4 (DR4) (also known as TRAIL-R1) and DR5 (TRAIL-R2). TRAIL can also bind decoy receptor 1 (DcR1) (TRAIL-R3) and DcR2 (TRAIL-R4) that fail to induce apoptosis since they lack and have a truncated cytoplasmic death domain, respectively. In addition, DcR1 and DcR2 inhibit DR4- and DR5-mediated, TRAIL-induced apoptosis and we demonstrate here that this occurs through distinct mechanisms. While DcR1 prevents the assembly of the death-inducing signaling complex (DISC) by titrating TRAIL within lipid rafts, DcR2 is corecruited with DR5 within the DISC, where it inhibits initiator caspase activation. In addition, DcR2 prevents DR4 recruitment within the DR5 DISC. The specificity of DcR1- and DcR2-mediated TRAIL inhibition reveals an additional level of complexity for the regulation of TRAIL signaling.
Resumo:
The formation of new blood vessels, a process globally referred to as angiogenesis, occurs in a number of pathological conditions, such as cancer and chronic inflammation. Recent findings indicate that cyclooxygenase-2 (COX-2), the inducible form of the cyclooxygenase (COX) isoenzymes, acts as a potent inducer of angiogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) are classical inhibitors of COX enzymes, which are widely prescribed for the treatment of inflammation, pain and fever. Selective COX-2 inhibitors (COXIBs) have been subsequently developed with the purpose to improve the safety profile of this class of therapeutics. More recently, substantial preclinical evidence demonstrated that NSAIDS and COXIBs have anti-angiogenic properties. This newly recognized activity opens the possibility of using these drugs for the treatment of angiogenesis-dependent diseases. In this article we review the most recent advances in understanding the mechanisms by which NSAIDs and COXIBs suppress angiogenesis, and we discuss their potential clinical use as anti-angiogenic drugs.
Resumo:
Machado-Joseph disease is the most frequently found dominantly-inherited cerebellar ataxia. Over-repetition of a CAG trinucleotide in the MJD1 gene translates into a polyglutamine tract within the ataxin 3 protein, which upon proteolysis may trigger Machado-Joseph disease. We investigated the role of calpains in the generation of toxic ataxin 3 fragments and pathogenesis of Machado-Joseph disease. For this purpose, we inhibited calpain activity in mouse models of Machado-Joseph disease by overexpressing the endogenous calpain-inhibitor calpastatin. Calpain blockage reduced the size and number of mutant ataxin 3 inclusions, neuronal dysfunction and neurodegeneration. By reducing fragmentation of ataxin 3, calpastatin overexpression modified the subcellular localization of mutant ataxin 3 restraining the protein in the cytoplasm, reducing aggregation and nuclear toxicity and overcoming calpastatin depletion observed upon mutant ataxin 3 expression. Our findings are the first in vivo proof that mutant ataxin 3 proteolysis by calpains mediates its translocation to the nucleus, aggregation and toxicity and that inhibition of calpains may provide an effective therapy for Machado-Joseph disease.
Resumo:
Atrial natriuretic peptide is cleared from plasma by clearance receptors and by enzymatic degradation by way of a neutral metalloendopeptidase. Inhibition of neutral metalloendopeptidase activity appears to provide an interesting approach to interfere with metabolism of atrial natriuretic peptide to enhance the renal and haemodynamic effects of endogenous atrial natriuretic peptide. In this study, the effects of SCH 34826, a new orally active neutral metalloendopeptidase inhibitor, have been evaluated in a single-blind, placebo-controlled study involving eight healthy volunteers who had maintained a high sodium intake for 5 days. SCH 34826 had no effect on blood pressure or heart rate in these normotensive subjects. SCH 34826 promoted significant increases in excretion of urinary sodium, phosphate, and calcium. The cumulative 5-hour urinary sodium excretion was 15.7 +/- 7.3 mmol for the placebo and 22.9 +/- 5, 26.7 +/- 6 (p less than 0.05), and 30.9 +/- 6.8 mmol (p less than 0.01) for the 400, 800, and 1600 mg SCH 34826 doses, respectively. During the same time interval, the cumulative urinary phosphate excretion increased by 0.3 +/- 0.4 mmol after placebo and by 1.5 +/- 0.3 (p less than 0.01), 1.95 +/- 0.3 (p less than 0.01), and 2.4 +/- 0.4 mmol (p less than 0.001) after 400, 800, and 1600 mg SCH 34826, respectively. There was no change in diuresis or excretion of urinary potassium and uric acid. The natriuretic response to SCH 34826 occurred in the absence of any change in plasma atrial natriuretic peptide levels but was associated with a dose-dependent elevation of urinary atrial natriuretic peptide and cyclic guanosine monophosphate.(ABSTRACT TRUNCATED AT 250 WORDS)