206 resultados para electrical differential
Resumo:
Mouse mammary tumor virus (MMTV) expresses a superantigen (SAg) which plays a critical role in the viral life cycle. We have recently described the new infectious MMTV (SIM) encoding a Vbeta4-specific SAg in mice with a TCR-Vbeta(b) haplotype. We have now compared the SAg activity of this virus in BALB/c mice harboring the TCR-Vbeta(a), TCR-Vbeta(b) or TCR-Vbeta(c) haplotypes which differ by a central deletion in the TCR-Vbeta(a) and TCR-Vbeta(c) locus and by mutations in some of the remaining Vbeta elements. Injection of MMTV (SIM) led to a strong stimulation of Vbeta4+ CD4+ T cells in TCR-Vbeta(b) mice, but only to a weak stimulation of these cells in TCR-Vbeta(a) or TCR-Vbeta(c) mice. A large increase in the percentage of Vbeta10+ cells was observed among CD4+ T cells in mice with the Vbeta(a) or Vbeta(c), but not the Vbeta(b) TCR-Vbeta haplotype. Vbeta10+ cells dominated the response when Vbeta10(a/c) and Vbeta4 subsets were present together. This is the first report of a viral SAg interacting with murine Vbeta10+ cells. Six amino acid differences between Vbeta10(a/c) and Vbeta10(b) could account for the gain of reactivity of Vbeta10(a/c) to the MMTV(SIM) SAg. No mutations were found in the hypervariable region 4 (HV4) of the TCR. Mutations at positions 22 and 28 introduce into Vbeta10(a/c) the same amino acids which are found at these positions in the MMTV(SIM)-reactive Vbeta4. Tridimensional models indicated that these amino acids lie close to HV4 and are likely to be important for the interaction of the SAg with the TCR.
Resumo:
Rhizobacteria-induced systemic resistance (ISR) and pathogen-induced systemic acquired resistance (SAR) have a broad, yet partly distinct, range of effectiveness against pathogenic microorganisms. Here, we investigated the effectiveness of ISR and SAR in Arabidopsis against the tissue-chewing insects Pieris rapae and Spodoptera exigua. Resistance against insects consists of direct defense, such as the production of toxins and feeding deterrents and indirect defense such as the production of plant volatiles that attract carnivorous enemies of the herbivores. Wind-tunnel experiments revealed that ISR and SAR did not affect herbivore-induced attraction of the parasitic wasp Cotesia rubecula (indirect defense). By contrast, ISR and SAR significantly reduced growth and development of the generalist herbivore S. exigua, although not that of the specialist P. rapae. This enhanced direct defense against S. exigua was associated with potentiated expression of the defense-related genes PDF1.2 and HEL. Expression profiling using a dedicated cDNA microarray revealed four additional, differentially primed genes in microbially induced S. exigua-challenged plants, three of which encode a lipid-transfer protein. Together, these results indicate that microbially induced plants are differentially primed for enhanced insect-responsive gene expression that is associated with increased direct defense against the generalist S. exigua but not against the specialist P. rapae.
Resumo:
The expression patterns of the three different peroxisome proliferator-activated receptor (PPAR) isotypes have been determined during rat embryonic development by in situ hybridization. The expression of PPARalpha starts late in development, with increasing levels in organs such as liver, kidney, intestine, and pancreas, in which it will also be present later in adulthood to regulate its specific target genes. PPARalpha is also transiently expressed in the embryonic epidermis and central nervous system. PPARgamma presents a very restricted pattern of expression, being strongly expressed in brown adipose tissue, in which differentiation it has been shown to participate. Like PPARalpha, it is also expressed transiently in the central nervous system. Interestingly, PPARalpha, -beta and -gamma are coexpressed at high levels in brown adipose tissue. Finally, the high and ubiquitous expression of PPARbeta suggests some fundamental role(s) that this receptor might play throughout development.
Resumo:
Fragile X syndrome (FXS) is an X-linked condition associated with intellectual disability and behavioral problems. It is caused by expansion of a CGG repeat in the 5' untranslated region of the fragile X mental retardation 1 (FMR1) gene. This mutation is associated with hypermethylation at the FMR1 promoter and resultant transcriptional silencing. FMR1 silencing has many consequences, including up-regulation of metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. mGluR5 receptor antagonists have shown promise in preclinical FXS models and in one small open-label study of FXS. We examined whether a receptor subtype-selective inhibitor of mGluR5, AFQ056, improves the behavioral symptoms of FXS in a randomized, double-blind, two-treatment, two-period, crossover study of 30 male FXS patients aged 18 to 35 years. We detected no significant effects of treatment on the primary outcome measure, the Aberrant Behavior Checklist-Community Edition (ABC-C) score, at day 19 or 20 of treatment. In an exploratory analysis, however, seven patients with full FMR1 promoter methylation and no detectable FMR1 messenger RNA improved, as measured with the ABC-C, significantly more after AFQ056 treatment than with placebo (P < 0.001). We detected no response in 18 patients with partial promoter methylation. Twenty-four patients experienced an adverse event, which was mostly mild to moderately severe fatigue or headache. If confirmed in larger and longer-term studies, these results suggest that blockade of the mGluR5 receptor in patients with full methylation at the FMR1 promoter may show improvement in the behavioral attributes of FXS.
Learning-induced plasticity in auditory spatial representations revealed by electrical neuroimaging.
Resumo:
Auditory spatial representations are likely encoded at a population level within human auditory cortices. We investigated learning-induced plasticity of spatial discrimination in healthy subjects using auditory-evoked potentials (AEPs) and electrical neuroimaging analyses. Stimuli were 100 ms white-noise bursts lateralized with varying interaural time differences. In three experiments, plasticity was induced with 40 min of discrimination training. During training, accuracy significantly improved from near-chance levels to approximately 75%. Before and after training, AEPs were recorded to stimuli presented passively with a more medial sound lateralization outnumbering a more lateral one (7:1). In experiment 1, the same lateralizations were used for training and AEP sessions. Significant AEP modulations to the different lateralizations were evident only after training, indicative of a learning-induced mismatch negativity (MMN). More precisely, this MMN at 195-250 ms after stimulus onset followed from differences in the AEP topography to each stimulus position, indicative of changes in the underlying brain network. In experiment 2, mirror-symmetric locations were used for training and AEP sessions; no training-related AEP modulations or MMN were observed. In experiment 3, the discrimination of trained plus equidistant untrained separations was tested psychophysically before and 0, 6, 24, and 48 h after training. Learning-induced plasticity lasted <6 h, did not generalize to untrained lateralizations, and was not the simple result of strengthening the representation of the trained lateralizations. Thus, learning-induced plasticity of auditory spatial discrimination relies on spatial comparisons, rather than a spatial anchor or a general comparator. Furthermore, cortical auditory representations of space are dynamic and subject to rapid reorganization.
Resumo:
Atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP) are important dilators of the pulmonary circulation during the perinatal period. We compared the responses of pulmonary arteries (PA) and veins (PV) of newborn lambs to these peptides. ANP caused a greater relaxation of PA than of PV, and CNP caused a greater relaxation of PV than of PA. RIA showed that ANP induced a greater increase in cGMP content of PA than CNP. In PV, ANP and CNP caused a similar moderate increase in cGMP content. Receptor binding study showed more specific binding sites for ANP than for CNP in PA and more for CNP than for ANP in PV. Relative quantitative RT-PCR for natriuretic peptide receptor A (NPR-A) and B (NPR-B) mRNAs show that, in PA, NPR-A mRNA is more prevalent than NPR-B mRNA, whereas, in PV, NPR-B mRNA is more prevalent than NPR-A mRNA. In conclusion, in the pulmonary circulation, arteries are the major site of action for ANP, and veins are the major site for CNP. Furthermore, the differences in receptor abundance and the involvement of a cGMP-independent mechanism may contribute to the heterogeneous effects of the natriuretic peptides in PA and PV of newborn lambs.
Resumo:
During its life cycle, the protozoan parasite Leishmania major alternates from an intracellular amastigote form in the mammalian host to a flagellated promastigote form in the insect vector. The expression of the surface metalloprotease (PSP) during differentiation in vitro was investigated by Western and Northern blots, by immunoprecipitation of cells metabolically labeled with [35S]methionine or labeled at the surface with radioactive iodine, and by quantification of the proteolytic activity in substrate-containing polyacrylamide gels. We report that the surface metalloprotease is down-regulated at both the mRNA and the protein level in amastigotes, where it represents less than 1% of the equivalent proteolytic activity detected in promastigotes. A significant amount of mRNA is detected 4 hr after the onset of differentiation. The expression of the protease begins at that time and reaches steady state 8 hr later. The synthesis of PSP precedes the complete morphological differentiation to the promastigote stage and the appearance of the lipophosphoglycan, another major promastigote surface component. In contrast to PSP, a family of mercaptoethanol-activated proteases present in the amastigote exists only at a reduced level in the promastigote. The confinement of the surface metalloprotease to the insect stage of the parasite suggests that it has no physiological function in the parasitism maintenance of mammalian host macrophages.
Resumo:
Microtubule-associated protein 1A (MAP1A) is essential during the late differentiation phase of neuronal development. Here, we demonstrated the presence of two MAP1A isoforms with a differential spatial distribution in the adult mouse barrel cortex. Antibody A stained MAP1A in pyramidal and stellate cells, including dendrites that crossed layer IV in the septa between barrels. The other antibody, BW6 recognized a MAP1A isoform that was mainly confined to the barrel hollow and identified smaller caliber dendrites. Previously, an interaction of MAP1A and the serotonin 5-hydroxytryptamine 2A (5-HT(2A)) receptor was shown in the rat cortex. Here, we identified, by double-immunofluorescent labeling, MAP1A isoform and serotonin 5-HT(2A) receptor distribution. MAP1A co-localized mainly with 5-HT(2A) receptor in larger apical dendrites situated in septa. This differential staining of MAP1A and a serotonin receptor in defined barrel compartments may be due to changes in the expression or processing of MAP1A during dendritic transport as a consequence of functional differences in processing of whisker-related sensory input.
Resumo:
The PHO1 protein is involved in loading inorganic phosphate (Pi) to the root xylem. Ten genes homologous to AtPHO1 are present in the Arabidopsis thaliana (L.) Heyn genome. From this gene family, transcript levels of only AtPHO1, AtPHO1;H1 and AtPHO1;H10 were increased by Pi-deficiency. While the up-regulation of AtPHO1;H1 and AtPHO1;H10 by Pi deficiency followed the same rapid kinetics and was dependent on the PHR1 transcription factor, phosphite only strongly suppressed the expression of AtPHO1;H1 and had a minor effect on AtPHO1;H10. Addition of sucrose was found to increase transcript levels of both AtPHO1 and AtPHO1;H1 in Pi-sufficient or Pi-deficient plants, but to suppress AtPHO1:H10 under the same conditions. Treatments of plants with auxin or cytokinin had contrasting effect depending on the gene and on the Pi status of the plants. Thus, while both hormones down-regulated expression of AtPHO1 independently of the plant Pi status, auxin and cytokinin up-regulated AtPHO1;H1 and AtPHO1;H10 expression in Pi-sufficient plants and down-regulated expression in Pi-deficient plants. Treatments with abscisic acid inhibited AtPHO1 and AtPHO1;H1 expression in both Pi-sufficient and Pi-deficient plants, but increased AtPHO1;H10 expression under the same conditions. The inhibition of expression by abscisic acid of AtPHO1 and AtPHO1;H1, and of the Pi-starvation responsive genes AtPHT1;1 and AtIPS1, was dependant on the ABI1 type 2C protein phosphatase. These results reveal that various levels of cross talk between the signal transduction pathways to Pi, sucrose and phytohormones are involved in the regulation of expression of the three AtPHO1 homologues.
Resumo:
Objectives: To characterize the modifications of gene expression of adenosine receptors (AR), TRPC channels, HIF-1α and iNOS during the early cardiogenesis in response to chronic hypoxia exposure. Methods: 4-day-old chick embryos were subjected in ovo to 6H, 12H and 24H of hypoxia (10% O2). The mRNA expression was quantified by RT-qPCR. Results: The targeted genes were found to be expressed at mRNA level with a differential expression pattern within the heart. Hypoxia has no significant effect on mRNA expression of ARs, TRPCs channels and iNOS within the heart. By contrast, HIF-1α mRNA expression shows a tendency to be down-regulated by hypoxia. Conclusion: These results suggest that an intrauterine oxygen lack does not significantly affect expression of genes involved in adenosine signaling and in calcium handling by store operated channels (TRPC).
Resumo:
During the ontogenesis of dorsal root ganglia (DRG), the immunoreactivity to substance P (SP) and calbindin D-28k (CaBP) appears in chickens at embryonic day 5 (E5) and E10 respectively. To establish the birthdates of primary sensory neurons expressing SP or CaBP, chick embryos were given repetitive intra-amniotic injections of [3H]-thymidine. The neuroblasts giving rise to SP-expressing neurons were labeled up to E6 while those generating CaBP-immunoreactive neurons stopped to incorporate [3H]-thymidine before E5.5. This finding indicates that neurons exhibiting distinct phenotypes may originate from neuroblasts which arrest to proliferate at close but distinct stages of development. To determine whether SP and CaBP are co-expressed or not in DRG neurons, chick embryos at E12, E18, and chickens two weeks after hatching were perfused and fixed to detect simultaneously SP- and CaBP-immunoreactivity in DRG sections. The results showed that SP and CaBP were transiently co-expressed by a subset of neurons at E12. Later, however, the SP-immunoreactivity was gradually lost by these ganglion cells, so that the SP- and CaBP-immunoreaction defined two distinct neuronal subpopulations after hatching. In conclusion, most CaBP-immunoreactive DRG cells derive from a subset of neurons in which SP and CaBP are transiently co-localized.
Resumo:
Despite myriad studies, neurophysiologic mechanisms mediating illusory contour (IC) sensitivity remain controversial. Among the competing models one favors feed-forward effects within lower-tier cortices (V1/V2). Another situates IC sensitivity first within higher-tier cortices, principally lateral-occipital cortices (LOC), with later feedback effects in V1/V2. Still others postulate that LOC are sensitive to salient regions demarcated by the inducing stimuli, whereas V1/V2 effects specifically support IC sensitivity. We resolved these discordances by using misaligned line gratings, oriented either horizontally or vertically, to induce ICs. Line orientation provides an established assay of V1/V2 modulations independently of IC presence, and gratings lack salient regions. Electrical neuroimaging analyses of visual evoked potentials (VEPs) disambiguated the relative timing and localization of IC sensitivity with respect to that for grating orientation. Millisecond-by-millisecond analyses of VEPs and distributed source estimations revealed a main effect of grating orientation beginning at 65 ms post-stimulus onset within the calcarine sulcus that was followed by a main effect of IC presence beginning at 85 ms post-stimulus onset within the LOC. There was no evidence for differential processing of ICs as a function of the orientation of the grating. These results support models wherein IC sensitivity occurs first within the LOC.
Resumo:
Many organelles exist in an equilibrium of fragmentation into smaller units and fusion into larger structures, which is coordinated with cell division, the increase in cell mass, and envi¬ronmental conditions. In yeast cells, organelle homeostasis can be studied using the yeast vacuole (lysosome) as a model system. Yeast vacuoles are the main compartment for degrada¬tion of cellular proteins and storage of nutrients, ions and metabolites. Fission and fusion of vacuoles can be induced by hyper- and hypotonic shock in vivo, respectively, and have also been reconstituted in vitro using isolated vacuoles. The conserved serine/threonine kinase TOR (target of rapamycin) is a central nutrient sensor and regulates cell growth and metabolism. In yeast, there are two TOR proteins, Torlp and Tor2p, which are part of larger protein complexes, TORCI and TORC2. Only TORCI is rapamycin-sensitive. Disregulation of TOR signaling is linked to a multitude of diseases in humans, e.g. cancer, neurodegenerative diseases and metabolic syndrome. It has been shown that TORCI localizes to the vacuole membrane, and recent findings of our laboratory demonstrated that TORCI positively regulates vacuole fragmentation. This suggests that the fragmentation machinery should contain target proteins phosphorylated by TORCI. I explored the rapamycin-and fission-dependent vacuolar phosphoproteome during frag¬mentation, using a label-free mass-spectrometry approach. I identified many vacuolar factors whose phosphorylation was downregulated in a TORCI- and fission-dependent manner. Among them were known protein complexes that are functionally linked to fission or fusion, like the HOPS, VTC and FAB1 complexes. Hence, TORCI-dependent phosphorylations might positively regulate vacuole fission. Several candidates were chosen for detailed microscopic analysis of in vivo vacuole frag-mentation, using deletion mutants. I was able to identify novel factors not previously linked to fission phenotypes, e.g. the SEA complex, Pib2, and several vacuolar amino acid transporters. Transport of neutral and basic amino acids across the membrane seems to control vacuole fission, possibly via TORCI. I analyzed vacuolar fluxes of amino acids in wildtype yeast cells and found evidence for a selective vacuolar export of basic amino acids upon hyperosmotic stress. This leads me to propose a model where vacuolar export of amino acids is necessary to reshape the organelle under salt stress. - Le nombre et la taille de certaines organelles peut être déterminé par un équilibre entre la fragmentation qui produit des unités plus petites et la fusion qui génère des structures plus larges. Cet équilibre est coordonné avec la division cellulaire, l'augmentation de la masse cellulaire, et les conditions environnementales. Dans des cellules de levure, l'homéostasie des organelles peut être étudié à l'aide d'un système modèle, la vacuole de levure (lysosome). Les vacuoles constituent le principal compartiment de la dégradation des protéines et de stockage des nutriments, des ions et des métabolites. La fragmentation et la fusion des vacuoles peuvent être respectivement induites par un traitement hyper- ou hypo-tonique dans les cellules vivantes. Ces processus ont également été reconstitués in vitro en utilisant des vacuoles isolées. La sérine/thréonine kinase conservée TOR (target of rapamycin/cible de la rapamycine) est un senseur de nutriments majeur qui régule la croissance cellulaire et le métabolisme. Chez la levure, il existe deux protéines TOR, Torlp et Tor2p, qui sont les constituants de plus grands complexes de protéines, TORCI et TORC2. TORCI est spécifiquement inhibé par la rapamycine. Une dysrégulation de la signalisation de TOR est liée à une multitude de maladies chez l'homme comme le cancer, les maladies neurodégénératives et le syndrome métabolique. Il a été montré que TORCI se localise à la membrane vacuolaire et les découvertes récentes de notre laboratoire ont montré que TORCI régule positivement la fragmentation de la vacuole. Ceci suggère que le mécanisme de fragmentation doit être contrôlé par la phosphorylation de certaines protéines cibles de TORCI. J'ai exploré le phosphoprotéome vacuolaire lors de la fragmentation, en présence ou absence de rapamycine et dans des conditions provoquant la fragmentation des organelles. La méthode choisie pour réaliser la première partie de ce projet a été la spectrométrie de masse différentielle sans marquage. J'ai ainsi identifié plusieurs facteurs vacuolaires dont la phosphorylation est régulée d'une manière dépendante de TORCI et de la fragmentation. Parmi ces facteurs, des complexes protéiques connus qui sont fonctionnellement liées à fragmentation ou la fusion, comme les complexes HOPS, VTC et FAB1 ont été mis en évidence. Par conséquent, la phosphorylation dépendante de TORCI peut réguler positivement la fragmentation des vacuoles. Plusieurs candidats ont été choisis pour une analyse microscopique détaillée de la fragmentation vacuolaire in vivo en utilisant des mutants de délétion. J'ai été en mesure d'identifier de nouveaux facteurs qui n'avaient pas été encore associés à des phénotypes de fragmentation tels que les complexes SEA, Pib2p, ainsi que plusieurs transporteurs vacuolaires d'acides aminés. Le transport des acides aminés à travers la membrane semble contrôler la fragmentation de la vacuole. Puisque ces transporteurs sont phosphorylés par TORCI, ces résultats semblent confirmer la
Resumo:
The antigen-presenting cell-expressed CD40 is implied in the regulation of counteractive immune responses such as induction of pro-inflammatory and anti-inflammatory cytokines interleukin (IL)-12 and IL-10, respectively. The mechanism of this duality in CD40 function remains unknown. Here, we investigated whether such duality depends on ligand binding. Based on CD40 binding, we identifed two dodecameric peptides, peptide-7 and peptide-19, from the phage peptide library. Peptide-7 induces IL-10 and increases Leishmania donovani infection in macrophages, whereas peptide-19 induces IL-12 and reduces L. donovani infection. CD40-peptide interaction analyses by surface plasmon resonance and atomic force microscopy suggest that the functional differences are not associated with the studied interaction parameters. The molecular dynamic simulation of the CD40-peptides interaction suggests that these two peptides bind to two different places on CD40. Thus, we suggest for the first time that differential binding of the ligands imparts functional duality to CD40.