118 resultados para crustin-like gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

IMPORTANCE OF THE FIELD: Promising immunotherapeutic agents targeting co-stimulatory pathways are currently being tested in clinical trials. One player in this array of regulatory pathways is the LAG-3/MHC class II axis. The lymphocyte activation gene-3 (LAG-3) is a negative co-stimulatory receptor that modulates T cell homeostasis, proliferation and activation. A recombinant soluble dimeric form of LAG-3 (sLAG-3-Ig, IMP321) shows adjuvant properties and enhances immunogenicity of tumor vaccines. Recent clinical trials produced encouraging results, especially when the human dimeric soluble form of LAG-3 (hLAG-3-Ig) was used in combination with chemotherapy. AREAS COVERED IN THIS REVIEW: The biological relevance of LAG-3 in vivo. Pre-clinical data demonstrating adjuvant properties, as well as the improvement of tumor immunity by sLAG-3-Ig. Recent advances in the clinical development of the therapeutic reagent IMP321, hLAG-3-Ig, for cancer treatment. WHAT THE READER WILL GAIN: This review summarizes preclinical and clinical data on the biological functions of LAG-3. TAKE HOME MESSAGE: The LAG-3 inhibitory pathway is attracting attention, in the light of recent studies demonstrating its role in T cell unresponsiveness, and Treg function after chronic antigen stimulation. As a soluble recombinant dimer, the sLAG-3-Ig protein acts as an adjuvant for therapeutic induction of T cell responses, and may be beneficial to cancer patients when used in combination therapies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) protects beta-cells against apoptosis, increases their glucose competence, and induces their proliferation. We previously demonstrated that the anti-apoptotic effect was mediated by an increase in insulin-like growth factor-1 receptor (IGF-1R) expression and signaling, which was dependent on autocrine secretion of insulin-like growth factor 2 (IGF-2). Here, we further investigated how GLP-1 induces IGF-1R expression and whether the IGF-2/IGF-1R autocrine loop is also involved in mediating GLP-1-increase in glucose competence and proliferation. We show that GLP-1 up-regulated IGF-1R expression by a protein kinase A-dependent translational control mechanism, whereas isobutylmethylxanthine, which led to higher intracellular accumulation of cAMP than GLP-1, increased both IGF-1R transcription and translation. We then demonstrated, using MIN6 cells and primary islets, that the glucose competence of these cells was dependent on the level of IGF-1R expression and on IGF-2 secretion. We showed that GLP-1-induced primary beta-cell proliferation was suppressed by Igf-1r gene inactivation and by IGF-2 immunoneutralization or knockdown. Together our data show that regulation of beta-cell number and function by GLP-1 depends on the cAMP/protein kinase A mediated-induction of IGF-1R expression and the increased activity of an IGF-2/IGF-1R autocrine loop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inactivating mutations of the Ten-Eleven Translocation 2 (TET2) gene were first identified in myeloid malignancies and more recently in peripheral T-cell lymphomas (PTCLs). In the present study, we investigated the presence of TET2 coding sequence mutations and their clinical relevance in a large cohort of 190 PTCL patients. TET2 mutations were identified in 40 of 86 (47%) cases of angioimmunoblastic T-cell lymphoma (AITL) and in 22 of 58 (38%) cases of peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), but were absent in all other PTCL entities, with the exception of 2 of 10 cases of enteropathy-associated T-cell lymphoma. Among PTCL-NOS, a heterogeneous group of lymphoma-comprising cases likely to derive from Th follicular (T(FH)) cells similarly to AITL, TET2 mutations were more frequent when PTCL-NOS expressed T(FH) markers and/or had features reminiscent of AITL (58% vs 24%, P = .01). In the AITL and PTCL-NOS subgroups, TET2 mutations were associated with advanced-stage disease, thrombocytopenia, high International Prognostic Index scores, and a shorter progression-free survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The term "spindle cell liposarcoma" has been applied to liposarcomas (LPSs) composed predominantly or exclusively of spindled cells. These tumors have been considered variants of well-differentiated LPS (WDL), myxoid LPS, and spindle cell lipoma, suggesting that this is a heterogenous group of lesions. Using strict morphologic criteria and molecular and immunohistochemical analyses, we have identified a homogenous group of spindle cell lipomatous tumors, histologically and genetically distinct from other forms of LPS, which we have called "fibrosarcoma-like lipomatous neoplasm." Cases classified as "spindle cell LPS" or "low-grade LPS with spindle cell features" were reviewed. Final selection criteria included: (1) an exclusive low-grade spindle cell component resembling fibrosarcoma; (2) a mixture of bland fibroblastic cells resembling the preadipocyte and early-adipocyte stage of embryonic fat; and (3) molecular-genetic analysis that excluded other forms of lipomatous tumors. Of the initial 25 cases identified, comparative genomic hybridization (CGH) was uninformative in 2 cases; 5 were reclassified as WDL on the basis of molecular data (MDM2 amplification) and 6 as spindle cell lipoma (CGH profiles with a few gains and losses including a constant loss of chromosome 13 and frequent losses of chromosomes 16 and 6). The 12 remaining cases showed flat CGH profiles; of these cases, 11 were negative for DDIT3 gene rearrangements, and 1 result was uninterpretable. Patients ranged in age from 15 to 82 years (mean 50 y); male patients were affected slightly more often (7:5). Tumors arose in the deep (6) and superficial (3) soft tissue of the groin (4), buttock (3), thigh (2), flank (1), shoulder (1), and paratesticular tissue (1) and ranged in size from 2 to 20 cm (mean 7.5 cm). Clinical follow-up in 11 patients (9 mo to 20 y; mean 68 mo) showed no recurrences or metastases. As defined above, "fibrosarcoma-like lipomatous neoplasm" is a unique lipomatous tumor that should be distinguished from WDL/(low-grade) dedifferentiated LPS and myxoid LPS on combined histologic/molecular features because of its better prognosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurofilamentous changes in select groups of neurons are associated with the degenerative changes of many human age-related neurodegenerative diseases. To examine the possible effects of aging on the neuronal cytoskeleton containing human proteins, the retinas of transgenic mice expressing the gene for the human middle-sized neurofilament triplet were investigated at 3 or 12 months of age. Transgenic mice developed tangle-like neurofilamentous accumulations in a subset of retinal ganglion cells at 12 months of age. These neurofilamentous accumulations, which also involved endogenous neurofilament proteins, were present in the perikarya and proximal processes of large ganglion cells and were predominantly located in peripheral retina. The presence of the human protein may thus confer vulnerability of the cytoskeleton to age-related alterations in this specific retinal cell type and may serve as a model for similar cellular changes associated with Alzheimer's disease and glaucoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE Our purpose was development and assessment of a BRAF-mutant gene expression signature for colon cancer (CC) and the study of its prognostic implications. Materials and METHODS A set of 668 stage II and III CC samples from the PETACC-3 (Pan-European Trails in Alimentary Tract Cancers) clinical trial were used to assess differential gene expression between c.1799T>A (p.V600E) BRAF mutant and non-BRAF, non-KRAS mutant cancers (double wild type) and to construct a gene expression-based classifier for detecting BRAF mutant samples with high sensitivity. The classifier was validated in independent data sets, and survival rates were compared between classifier positive and negative tumors. Results A 64 gene-based classifier was developed with 96% sensitivity and 86% specificity for detecting BRAF mutant tumors in PETACC-3 and independent samples. A subpopulation of BRAF wild-type patients (30% of KRAS mutants, 13% of double wild type) showed a gene expression pattern and had poor overall survival and survival after relapse, similar to those observed in BRAF-mutant patients. Thus they form a distinct prognostic subgroup within their mutation class. CONCLUSION A characteristic pattern of gene expression is associated with and accurately predicts BRAF mutation status and, in addition, identifies a population of BRAF mutated-like KRAS mutants and double wild-type patients with similarly poor prognosis. This suggests a common biology between these tumors and provides a novel classification tool for cancers, adding prognostic and biologic information that is not captured by the mutation status alone. These results may guide therapeutic strategies for this patient segment and may help in population stratification for clinical trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a widespread agreement from patient and professional organisations alike that the safety of stem cell therapeutics is of paramount importance, particularly for ex vivo autologous gene therapy. Yet current technology makes it difficult to thoroughly evaluate the behaviour of genetically corrected stem cells before they are transplanted. To address this, we have developed a strategy that permits transplantation of a clonal population of genetically corrected autologous stem cells that meet stringent selection criteria and the principle of precaution. As a proof of concept, we have stably transduced epidermal stem cells (holoclones) obtained from a patient suffering from recessive dystrophic epidermolysis bullosa. Holoclones were infected with self-inactivating retroviruses bearing a COL7A1 cDNA and cloned before the progeny of individual stem cells were characterised using a number of criteria. Clonal analysis revealed a great deal of heterogeneity among transduced stem cells in their capacity to produce functional type VII collagen (COLVII). Selected transduced stem cells transplanted onto immunodeficient mice regenerated a non-blistering epidermis for months and produced a functional COLVII. Safety was assessed by determining the sites of proviral integration, rearrangements and hit genes and by whole-genome sequencing. The progeny of the selected stem cells also had a diploid karyotype, was not tumorigenic and did not disseminate after long-term transplantation onto immunodeficient mice. In conclusion, a clonal strategy is a powerful and efficient means of by-passing the heterogeneity of a transduced stem cell population. It guarantees a safe and homogenous medicinal product, fulfilling the principle of precaution and the requirements of regulatory affairs. Furthermore, a clonal strategy makes it possible to envision exciting gene-editing technologies like zinc finger nucleases, TALENs and homologous recombination for next-generation gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte-neuron lactate shuttle (ANLS) and the glutamate-glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others, MS NAGM astrocytes express inflammasome components and that astrocytes are capable to release Il-1β in-vitro. Altogether, our data suggests that immune signaling of immune- and/or central nervous system origin drives alterations in astrocytic ANLS and GGC gene regulation in the MS NAGM. Such a mechanism might underlie cortical brain dysfunctions frequently encountered in MS patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres) of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1) and cancer stem cell markers (ABCG2, CD44 and ALDH1) genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7). Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: An inverse correlation between expression of the aldehyde dehydrogenase 1 subfamily A2 (ALDH1A2) and gene promoter methylation has been identified as a common feature of oropharyngeal squamous cell carcinoma (OPSCC). Moreover, low ALDH1A2 expression was associated with an unfavorable prognosis of OPSCC patients, however the causal link between reduced ALDH1A2 function and treatment failure has not been addressed so far. METHODS: Serial sections from tissue microarrays of patients with primary OPSCC (n = 101) were stained by immunohistochemistry for key regulators of retinoic acid (RA) signaling, including ALDH1A2. Survival with respect to these regulators was investigated by univariate Kaplan-Meier analysis and multivariate Cox regression proportional hazard models. The impact of ALDH1A2-RAR signaling on tumor-relevant processes was addressed in established tumor cell lines and in an orthotopic mouse xenograft model. RESULTS: Immunohistochemical analysis showed an improved prognosis of ALDH1A2(high) OPSCC only in the presence of CRABP2, an intracellular RA transporter. Moreover, an ALDH1A2(high)CRABP2(high) staining pattern served as an independent predictor for progression-free (HR: 0.395, p = 0.007) and overall survival (HR: 0.303, p = 0.002), suggesting a critical impact of RA metabolism and signaling on clinical outcome. Functionally, ALDH1A2 expression and activity in tumor cell lines were related to RA levels. While administration of retinoids inhibited clonogenic growth and proliferation, the pharmacological inhibition of ALDH1A2-RAR signaling resulted in loss of cell-cell adhesion and a mesenchymal-like phenotype. Xenograft tumors derived from FaDu cells with stable silencing of ALDH1A2 and primary tumors from OPSCC patients with low ALDH1A2 expression exhibited a mesenchymal-like phenotype characterized by vimentin expression. CONCLUSIONS: This study has unraveled a critical role of ALDH1A2-RAR signaling in the pathogenesis of head and neck cancer and our data implicate that patients with ALDH1A2(low) tumors might benefit from adjuvant treatment with retinoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uncovering the genetic basis of phenotypic variation and the population history under which it established is key to understand the trajectories along which local adaptation evolves. Here, we investigated the genetic basis and evolutionary history of a clinal plumage color polymorphism in European barn owls (Tyto alba). Our results suggest that barn owls colonized the Western Palearctic in a ring-like manner around the Mediterranean and meet in secondary contact in Greece. Rufous coloration appears to be linked to a recently evolved nonsynonymous-derived variant of the melanocortin 1 receptor (MC1R) gene, which according to quantitative genetic analyses evolved under local adaptation during or following the colonization of Central Europe. Admixture patterns and linkage disequilibrium between the neutral genetic background and color found exclusively within the secondary contact zone suggest limited introgression at secondary contact. These results from a system reminiscent of ring species provide a striking example of how local adaptation can evolve from derived genetic variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most frequent and lethal primary brain tumor in adults. Accumulating evidence suggests that tumors comprise a hierarchical organization that is, at least partially, not genetically driven. Cells that reside at the apex of this hierarchy are commonly referred to as cancer stem cells (CSCs) and are believed to largely contribute to recurrence and therapeutic failure. Although the complexity of epigenetic regulation of the genome precludes prediction as to which epigenetic changes dominate CSC specification in different cancer types, the ability of microRNAs (miRNAs) to fine-tune expression of entire gene networks places them among prime candidates for establishing CSC properties. In this study we characterized the miRNA expression profile of primary GBM grown either under conditions that enrich for GSCs or their differentiated non-tumorigenic progeny (DGCs). Although, we identified a subset of miRNAs that was strongly differentially expressed between GSCs and DGCs, we observed that in GSCs both let-7 and, paradoxically, their target genes are highly expressed, suggesting protection against let-7 action. Using PAR-CLIP we show that insulin-like growth factor-2 mRNA-binding protein 2 (IMP2) provides a mechanism for let-7 target gene protection that represents an alternative to LIN28A/B, which abrogates let-7 biogenesis in normal embryonic and certain malignant stem cells. By direct binding to miRNA recognition elements, IMP2 protects its targets from let-7 mediated decay. Importantly, depletion of IMP2 in GSCs strongly impairs their self- renewal properties and tumorigenicity in vivo, a phenotype that can be rescued by expression of LIN28B, suggesting that IMP2 mainly contributes to GSC maintenance by protecting let-7 target genes from silencing. Using mouse models, we show that depletion of IMP2 in neural stem cells (NSCs) induces let-7 target gene down-regulation, impairs their clonogenic capacity, and affects differentiation. Taken together, our observations describe a novel regulatory function of IMP2 in the let-7 axis whereby it supports GSC and NSC specification. Résumé (Français) Le glioblastome (GBM) est la tumeur primaire maligne du cerveau la plus fréquente. De nombreuses études ont démontré l'existence d'une organisation hiérarchique des cellules cancéreuses liée à des mécanismes épigénétiques. Les cellules qui se trouvent au sommet de cette hiérarchie sont appelées cellules souches cancéreuses (CSC), et contribuent à l'échec thérapeutique. Bien que la complexité des régulateurs épigénétiques permette difficilement de prédire quel mécanisme contribue le plus aux propriétés des CSC, la capacité des microRNAs (miRNAs) de réguler des réseaux entiers de gènes, les placent comme des candidats de premiers choix. Ici, nous avons caractérisé le profil d'expression des miRNAs dans des tumeurs primaires de GBM cultivées dans des conditions qui enrichissent soit pour les CSC, soit pour leur contrepartie de cellules cancéreuses différences (CCD). De manière surprenante et paradoxale la famille de miRNA let-7 et leurs gènes cibles étaient hautement exprimés dans les CSC, suggérant un mécanisme de protection contre l'action des let-7. Avec l'aide de la technologie PAR-CLIP, nous démontrons que la protéine IMP2, protège les mRNAs de l'action des let-7 et représente une alternative à Lin28A/B, qui d'ordinaire réprime fortement la maturation des let-7 dans les cellules souches embryonnaires et divers cancers. En se liant à la région ciblée par les let-7, IMP2 protège ses transcrits de l'action de cette classe de microRNA qui est tumoro-supressive. La déplétion d'IMP2 dans des CSC de GBM réduit fortement leur clonogénicité in vitro et leur tumorigénicité in vivo. Ceci peut être reversé en introduisant Lin28B dans des CSC de GBM, suggérant qu'IMP2 exerce ses fonctions pro-tumorigéniques en modulant l'axe let-7. Avec l'aide de modèles murins, nous observons que la déplétion de IMP2 dans les cellules souches neurales (CSN) induit une baisse de leur clonogénicité et des cibles des miRNAs let-7, suggérant une conservation de ce mécanisme entre les CSC de GBM et les CSN. En résumé, nos observations définissent une nouvelle fonction de IMP2 dans l'axe let-7 par lequel il contribue au maintien des propriétés des CSC et des CSN.