546 resultados para cd8( )
Resumo:
Immunodominance has been well-demonstrated in many antiviral and antibacterial systems, but much less so in the setting of immune responses against cancer. Tumor Ag-specific CD8+ T cells keep cancer cells in check via immunosurveillance and shape tumor development through immunoediting. Because most tumor Ags are self Ags, the breadth and depth of antitumor immune responses have not been well-appreciated. To design and develop antitumor vaccines, it is important to understand the immunodominance hierarchy and its underlying mechanisms, and to identify the most immunodominant tumor Ag-specific T cells. We have comprehensively analyzed spontaneous cellular immune responses of one individual and show that multiple tumor Ags are targeted by the patient's immune system, especially the "cancer-testis" tumor Ag NY-ESO-1. The pattern of anti-NY-ESO-1 T cell responses in this patient closely resembles the classical broad yet hierarchical antiviral immunity and was confirmed in a second subject.
Resumo:
Résumé La plupart des cellules issues du sang ont une durée de vie limitée. Dans les cellules somatiques humaines, y incluant les lymphocytes T, la taille des télomères diminue progressivement à chaque division cellulaire, pouvant aboutir à des instabilités chromosomiques. L'expression ectopique du gène de la transcriptase réverse de la télomérase (hTERT) dans les cellules restaure l'activité de la télomérase, et permet un rallongement de leur vie réplicative. Malgré l'absence de signes caractéristiques de transformation, nous ne savons pas encore si les cellules somatiques qui surexpriment hTERT sont physiologiquement indiscernables des cellules normales. Certaines études récentes proposent que la télomérase joue plusieurs rôles additionnels dans d'autres phénomènes biologiques tels que la réparation de l'ADN, la survie et la croissance des cellules. Dans notre étude, nous avons utilisé des clones issus de lymphocytes T cytotoxiques surexprimant la télomérase afin d'étudier les mécanismes moléculaires qui règlent leur prolifération et leur sénescence. Nous avons montré que les «jeunes » cellules T exprimant ou non hTERT révèlent des taux de croissance identiques suite à des réponses de stimulation induites par des mitogènes. De plus, aucun changement global dans leur expression des gènes n'a pu être mis en évidence. Curieusement, nous avons observé des réponses réduites dans la prolifération des cellules transduites avec la télomérase qui présentaient une élongation des télomères et une durée de vie prolongée. Ces cellules, malgré le maintien d'un niveau élevé de l'expression de gènes impliqués dans la progression du cycle cellulaire, ont également montré une expression accrue de plusieurs gènes trouvés en commun avec nos lymphocytes T vieillissants n'exprimant pas de télomérase. En particulier, les cellules ayant une durée de vie prolongée grâce à l'expression de la télomérase accumulaient également certains inhibiteurs du cycle cellulaire tels que p16Ink4a et p21Cip1, associés à l'arrêt de la croissance cellulaire. En résumé, nos résultats indiquent la présence fonctionnelle de mécanismes alternatifs pouvant contrôler la croissance réplicative de ces cellules; ils sont donc encourageants dans l'optique d'une utilisation à moindre risque de lymphocytes T «immortalisés » à des fins thérapeutiques pour traiter les tumeurs malignes ou les infections. Summary Most mature blood cells have a finite life span. In human somatic cells, including T lymphocytes, telomeres progressively shorten with each cell division eventually leading to chromosomal instability. Ectopic expression of the human telomerase reverse transcriptase (hTERT) gene in cells restores telomerase activity and results in the extension of their replicative life span. Despite lack of transformation characteristics, it is yet unknown whether somatic cells that over-express telomerase are biologically and physiologically indistinguishable from normal cells. Recent data suggest that telomerase might mediate additional functions in DNA repair, cell survival and cell growth. Using CD8+ T lymphocyte clones over-expressing telomerase we investigated the molecular mechanisms that regulate T cell proliferation and senescence. Here we show that early-passage T cell clones transduced or not with hTERT displayed identical growth rates upon mitogenic stimulation and no marked global changes in gene expression. Surprisingly, reduced proliferative responses were observed in hTERT-transduced cells with elongated telomeres and extended life span. These cells, despite maintaining high expression level of genes involved in cell cycle division and progression, also showed increased expression of several genes associated with normal aging T lymphocytes. In particular, late passage T cells over-expressing telomerase accumulated the cyclin-dependent inhibitors p16INK4a and p21CIP1 that have largely been associated with in vitro growth arrest. Whether tumor-reactive CD8+ T cells that ectopically express telomerase could now be used for adoptive transfer therapy in cancer patients remains unclear at this point. Nevertheless, our results regarding the safe and effective use of hTERT-transduced lymphocytes are encouraging, since they indicate that alternative growth arrest mechanisms such as p 16 and p21 are still functional in these cells and regulate to some extend their growth potential.
Resumo:
A subset of CD8 T cells in normal mice, expressing high levels of activation markers such as CD44, shares many properties with antigen-specific memory CD8 T cells. Homeostasis of CD44(high) CD8 T cells depends upon cytokines such as interleukin-15 (IL-15); however, the downstream signaling pathways regulating IL-15-dependent homeostatic proliferation are poorly defined. Surprisingly, we show here that haploinsufficiency of the protooncogene c-myc leads to a highly selective decrease in CD44(high) CD8 T cells in mice. Although steady-state proliferation and survival of CD44(high) CD8 T cells appeared not to be dependent on c-Myc, homeostatic proliferation of c-myc(+/-) CD44(high) CD8 T cells in lymphopenic hosts was strongly reduced, and the residual homeostatic proliferation of these cells appeared to occur independently of IL-15. Moreover, c-myc(+/-) CD44(high) CD8 T cells responded very poorly to purified IL-15 in vitro. Backcrossing of c-myc(+/-) mice to IL-15(-/-) mice revealed that the number of CD44(high) CD8 T cells decreased in an additive fashion in mice heterozygous for c-myc and IL-15. Finally homeostatic proliferation of antigen-specific memory CD44(high) CD8 T cells was also impaired in c-myc(+/-) mice. Collectively, our data identify c-Myc as a novel downstream component of the IL-15-dependent pathway controlling homeostatic proliferation of memory CD44(high) CD8 T cells.
Resumo:
NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8(+) T cell epitope, NY-ESO-1(88-96) (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1(157-165) epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-1(88-96) is much more efficiently cross-presented from the soluble form, than NY-ESO-1(157-165). On the other hand, NY-ESO-1(157-165) is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A(26-35); whereas NY-ESO-1(88-96) was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-1(88-96) is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18(+) melanoma patients. Surprisingly, all the detectable responses to NY-ESO-1(88-96) from patients, including those who received NY-ESO-1 ISCOMATRIX? vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8(+) T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed.
Resumo:
The CD8(+)-T-cell response to Moloney murine leukemia virus (M-MuLV)-associated antigens in C57BL/6 mice is directed against an immunodominant gag-encoded epitope (CCLCLTVFL) presented in the context of H-2D(b) and is restricted primarily to cytotoxic T lymphocytes (CTL) expressing the Valpha3.2 and Vbeta5.2 gene segments. We decided to examine the M-MuLV response in congenic C57BL/6 Vbeta(a) mice which are unable to express the dominant Valpha3.2(+) Vbeta5.2(+) T-cell receptor (TCR) due to a large deletion at the TCR locus that includes the Vbeta5.2 gene segment. Interestingly, M-MuLV-immune C57BL/6 Vbeta(a) mice were still able to reject M-MuLV-infected tumor cells and direct ex vivo analysis of peripheral blood lymphocytes from these immune mice revealed a dramatic increase in CD8(+) cells utilizing the same Valpha3.2 gene segment in association with two different Vbeta segments (Vbeta3 and Vbeta17). Surprisingly, all these CTL recognized the same immunodominant M-MuLV gag epitope. Analysis of the TCR repertoire of individual M-MuLV-immune (C57BL/6 x C57BL/6 Vbeta(a))F(1) mice revealed a clear hierarchy in Vbeta utilization, with a preferential usage of the Vbeta17 gene segment, whereas Vbeta3 and especially Vbeta5.2 were used to much lesser extents. Sequencing of TCRalpha- and -beta-chain junctional regions of CTL clones specific for the M-MuLV gag epitope revealed a diverse repertoire of TCRbeta chains in Vbeta(a) mice and a highly restricted TCRbeta-chain repertoire in Vbeta(b) mice, whereas TCRalpha-chain sequences were highly conserved in both cases. Collectively, our data indicate that the H-2D(b)-restricted M-MuLV gag epitope can be recognized in a hierarchal fashion by different Vbeta domains and that the degree of beta-chain diversity varies according to Vbeta utilization.
Resumo:
In humans, the pathways of memory and effector T cell differentiation remain poorly defined. We have dissected the functional properties of ex vivo effector-memory (EM) CD45RA-CCR7- T lymphocytes present within the circulating CD8+ T cell pool of healthy individuals. Our studies show that EM T cells are heterogeneous and are subdivided based on differential CD27 and CD28 expression into four subsets. EM(1) (CD27+CD28+) and EM(4) (CD27-CD28+) T cells express low levels of effector mediators such as granzyme B and perforin and high levels of CD127/IL-7Ralpha. EM(1) cells also have a relatively short replicative history and display strong ex vivo telomerase activity. Therefore, these cells are closely related to central-memory (CD45RA-CCR7+) cells. In contrast, EM(2) (CD27+CD28-) and EM(3) (CD27-CD28-) cells express mediators characteristic of effector cells, whereby EM(3) cells display stronger ex vivo cytolytic activity and have experienced larger numbers of cell divisions, thus resembling differentiated effector (CD45RA+CCR7-) cells. These data indicate that progressive up-regulation of cytolytic activity and stepwise loss of CCR7, CD28, and CD27 both characterize CD8+ T cell differentiation. Finally, memory CD8+ T cells not only include central-memory cells but also EM(1) cells, which differ in CCR7 expression and may therefore confer memory functions in lymphoid and peripheral tissues, respectively.
Resumo:
Through a rational design approach, we generated a panel of HLA-A*0201/NY-ESO-1(157-165)-specific T cell receptors (TCR) with increasing affinities of up to 150-fold from the wild-type TCR. Using these TCR variants which extend just beyond the natural affinity range, along with an extreme supraphysiologic one having 1400-fold enhanced affinity, and a low-binding one, we sought to determine the effect of TCR binding properties along with cognate peptide concentration on CD8(+) T cell responsiveness. Major histocompatibility complexes (MHC) expressed on the surface of various antigen presenting cells were peptide-pulsed and used to stimulate human CD8(+) T cells expressing the different TCR via lentiviral transduction. At intermediate peptide concentration we measured maximum cytokine/chemokine secretion, cytotoxicity, and Ca(2+) flux for CD8(+) T cells expressing TCR within a dissociation constant (K(D)) range of ∼1-5 μM. Under these same conditions there was a gradual attenuation in activity for supraphysiologic affinity TCR with K(D) < ∼1 μM, irrespective of CD8 co-engagement and of half-life (t(1/2) = ln 2/k(off)) values. With increased peptide concentration, however, the activity levels of CD8(+) T cells expressing supraphysiologic affinity TCR were gradually restored. Together our data support the productive hit rate model of T cell activation arguing that it is not the absolute number of TCR/pMHC complexes formed at equilibrium, but rather their productive turnover, that controls levels of biological activity. Our findings have important implications for various immunotherapies under development such as adoptive cell transfer of TCR-engineered CD8(+) T cells, as well as for peptide vaccination strategies.
Resumo:
Mutations in the nucleophosmin gene (NPM1(mut)) are one of the most frequent molecular alterations in acute myeloid leukemia (AML), and immune responses may contribute to the favorable prognosis of AML patients with NPM1(mut). In the present study, we were able to demonstrate both CD4(+) and CD8(+) T-cell responses against NPM1(mut). Ten peptides derived from wild-type NPM1 and NPM1(mut) were subjected to ELISPOT analysis in 33 healthy volunteers and 27 AML patients. Tetramer assays against the most interesting epitopes were performed and Cr(51)-release assays were used to show the cytotoxicity of peptide-specific T cells. Moreover, HLA-DR-binding epitopes were used to test the role of CD4(+) T cells in NPM1 immunogenicity. Two epitopes (epitopes #1 and #3) derived from NPM1(mut) induced CD8(+) T-cell responses. A total of 33% of the NPM1(mut) AML patients showed immune responses against epitope #1 and 44% against epitope #3. Specific lysis of leukemic blasts was detected. To obtain robust immune responses against tumor cells, the activation of CD4(+) T cells is crucial. Therefore, overlapping (OL) peptides were analyzed in ELISPOT assays and OL8 was able to activate both CD8(+) and CD4(+) T cells. The results of the present study show that NPM1(mut) induces specific T-cell responses of CD4(+) and CD8(+) T cells and therefore is a promising target for specific immunotherapies in AML.
Resumo:
According to recent crystallographic studies, the TCR-alpha beta contacts MHC class I-bound antigenic peptides via the polymorphic V gene-encoded complementarity-determining region 1 beta (CDR1 beta) and the hypervariable (D)J-encoded CDR3 beta and CDR3 alpha domains. To evaluate directly the relative importance of CDR1 beta polymorphism on the fine specificity of T cell responses in vivo, we have taken advantage of congenic V beta a and V beta b mouse strains that differ by a CDR1 polymorphism in the V beta 10 gene segment. The V beta 10-restricted CD8+ T cell response to a defined immunodominant epitope was dramatically reduced in V beta a compared with V beta b mice, as measured either by the expansion of V beta 10+ cells or by the binding of MHC-peptide tetramers. These data indicate that V beta polymorphism has an important impact on TCR-ligand binding in vivo, presumably by modifying the affinity of CDR1 beta-peptide interactions.
Resumo:
Ex vivo analysis of virus-specific CD8 T cell populations by anchored PCR has shown that the CD8 TCR repertoire was less oligoclonal (seven to nine clonotypes per individual epitope) than previously thought. In the current study, TCR diversity was investigated by assessing both the overall TCR β-chain variable regions usage as well as the CDR3 regions in ex vivo-isolated CMV- and EBV-specific CD8 T cells from 27 healthy donors. The average number of clonotypes specific to most single viral epitopes comprised between 14 and 77. Changes in the CD8 TCR repertoire were also longitudinally assessed under conditions of HIV-1 chronic infection (i.e., in patients with suppressed virus replication and after treatment interruption and Ag re-exposure). The results showed that a large renewal (≤80%) of the TRB repertoire occurred after Ag re-exposure and was eventually associated with an increased T cell recognition functional avidity. These results demonstrate that the global CD8 TCR repertoire is much more diverse (≤9-fold) than previously estimated and provide the mechanistic basis for supporting massive repertoire renewal during chronic virus infection and Ag re-exposure.
Resumo:
The authors developed a standardized approach for immune monitoring of antigen-specific CD8+ T cells within peripheral blood lymphocytes (PBLs) that combines direct ex vivo analysis of Melan-A/MART-1 and influenza-specific CD8+ T cells with HLA-A2/peptide multimers and interferon-gamma ELISPOT assays. Here the authors assessed the quality of results obtained with 180 PBLs from healthy donors and melanoma patients. Reproducibility of the multimer assay was good (average of 15% variation). In the absence of in vivo antigen-specific T-cell responses, physiologic fluctuations of multimer-positive T cells was low, with variation coefficients of 20% for Melan-A and 28% for influenza-specific T cells. In contrast, patients with vaccination-induced T-cell responses had significantly increased T-cell frequencies clearly exceeding physiologic fluctuations. Comparable results were obtained with ELISPOT assays. In conclusion, this approach is well suited to assess T-cell responses as biologic endpoints in clinical vaccine studies.
Resumo:
Using H-2Kd-restricted photoprobe-specific cytotoxic T lymphocyte (CTL) clones, which permit assessment of T cell receptor (TCR)-ligand interactions by TCR photoaffinity labeling, we observed that the efficiency of antigen recognition by CTL was critically dependent on the half-life of TCR-ligand complexes. We show here that antigen recognition by CTL is essentially determined by the frequency of serial TCR engagement, except for very rapid dissociations, which resulted in aberrant TCR signaling and antagonism. Thus agonists that were efficiently recognized exhibited rapid TCR-ligand complex dissociation, and hence a high frequency of serial TCR engagement, whereas the opposite was true for weak agonists. Surprisingly, these differences were largely accounted for by the coreceptor CD8. While it was known that CD8 substantially decreases TCR-ligand complex dissociation, we observed in this study that this effect varied considerably among ligand variants, indicating that epitope modifications can alter the CD8 contribution to TCR-ligand binding, and hence the efficiency of antigen recognition by CTL.