250 resultados para catecholamine depletion
Resumo:
The Hamersley province of northwest Australia is one of the world's premier iron ore regions with high-grade martite-microplaty hematite iron ore deposits mostly hosted within banded iron formation (BIF) sequences of the Brockman Iron Formations of the Hamersley Group. These high-grade iron ores contain between 60 and 68 wt percent Fe, and formed by the multistage interaction of hydrothermal fluids with the host BIF formation. The oxygen isotope compositions of magnetite and hematite from BIF, hydrothermal alteration assemblages, and high-grade iron Ore were analyzed from the Mount Tom Price, Paraburdoo, and Charmar iron ore deposits. The delta(18)O values of magnetite and hematite from hydrothermal alteration assemblages and high-grade iron ore range from -9.0 to -2.9 per mil, a depletion of 5 to 15 per mil relative to the host BIF. The delta(18)O values are spatially controlled by faults within the deposits, a response to higher fluid flux and larger influence the isotopic compositions by the hydrothermal fluids. The oxygen isotope composition of hydrothermal fluids (delta(18)O(fluid)) indicates that the decrease in the (18)O content of iron oxides was due to the interaction of both basinal brines and meteoric fluids with the original BIF. Late-stage talc-bearing ore at the Mount Tom Price deposit formed in the presence of a pulse of delta(18)O-enriched basinal brine, indicating that hydrothermal fluids may have repeatedly interacted with the BIFs during the Paleoproterozoic.
Resumo:
Background: Neuroblastoma is a paediatrictumour derived from the neural crest. Biochemical diagnosis and follow up rely on quantitation of urinary catecholamines (dopamine and noradrenaline) and their metabolites vanillylmandelic acid (VMA) and homovanillic acid (HVA) (gold-standard). When combined, these analyses have a sensitivity of 95%. However, they are clearly limited by inaccuracy of urine collection in young children and normalisation of catecholamine concentrations by creatininuria. Recent development in biochemical diagnosis of pheochromocytoma, another neural crest tumour found in adults, shows that plasmatic measurement of methoxylated catecholamines called metanephrines are more sensitive and specific than other biomarkers. Moreover, a study to determine the reference intervals for metanephrines in a pediatric population has recently been completed. The aim of this work is to describe the role of metanephrines monitoring in the follow up of neuroblastoma. Method: This retrospective study included patients with neuroblastoma in whom the following parameters were determined: plasma free and total metanephrines, plasma catecholamines, 24h urinary catecholamines and metanephrines in absolute value and corrected by creatinine, VMA and HVA at the diagnosis and during treatment at the University Hospital of Lausanne (Switzerland). Eleven patients aged between the first day of life and 7 years old were followed between 2005 and 2012. Clinical outcome and biochemical concentrations of the analytes were correlated. Results: At diagnosis, plasma free and total normetanephrines and methoxytyramine have a sensitivity of 100% compared to 85% for the actual gold standard. Metanephrine remain below the upper reference limit as expected since these tumours do not produce adrenaline. The relationship between biochemical markers and clinical outcome is illustrated graphically. Plasma or urinary normetanephrine and methoxytyramine correlate better with the history of the patient than VMA and HVA, as evaluated by ordinal logistic regression. Concentrations of analytes in urine show a better correlation with clinical events when the results are corrected by creatininuria. Conclusion: Normetanephrine and methoxytyramine reflect disease history in neuroblastoma patients and could play a significant role in the follow up of this type of tumour. Formal studies in a sufficient number of patients are needed to confirm this preliminary observation.
Resumo:
Securin and separase play a key role in sister chromatid separation during anaphase. However, a growing body of evidence suggests that in addition to regulating chromosome segregation, securin and separase display functions implicated in membrane traffic in Caenorhabditis elegans and Drosophila. Here we show that in mammalian cells both securin and separase associate with membranes and that depletion of either protein causes robust swelling of the trans-Golgi network (TGN) along with the appearance of large endocytic vesicles in the perinuclear region. These changes are accompanied by diminished constitutive protein secretion as well as impaired receptor recycling and degradation. Unexpectedly, cells depleted of securin or separase display defective acidification of early endosomes and increased membrane recruitment of vacuolar (V-) ATPase complexes, mimicking the effect of the specific V-ATPase inhibitor Bafilomycin A1. Taken together, our findings identify a new functional role of securin and separase in the modulation of membrane traffic and protein secretion that implicates regulation of V-ATPase assembly and function.
Resumo:
Background: HIV vaccine-candidates based on rare adenovirus serotypes such as Ad26 and Ad35 vectors, and poxvirus vectors are important components of future promising vaccine regimens that in the near future hopefully will move into a number of efficacy clinical trials in combination with protein vaccines. For these reasons, it is important to comprehensively characterize the vaccine-induced immune responses in different anatomical compartments and particularly at mucosal sites which represent the primary port of entry for HIV.Methods: In the present study, we have investigated the anatomic distribution in blood and gut mucosal tissues (rectum and ileum) of memory poxvirus-specific CD4 and CD8 T cells in subjects vaccinated with smallpox and compared with vector (NYVAC)-specific and HIV insert-specific T-cell responses induced by an experimental DNA-C/NYVAC-C vaccine regimen.Results: Smallpox-specific CD4 T-cell responses were present in the blood of 52% of subject studied, while Smallpox-specific CD8 T cells were rarely detected (12%). With one exception, Smallpoxspecific T cells were not measurable in gut tissues. Interestingly, NYVAC vector-specific and HIV-specific CD4 and CD8 T-cell responses were detected in almost 100% of the subjects immunized with DNA-C/NYVAC-C in blood and gut tissues. The large majority (83%) of NYVAC-specific CD4 T cells expressed a4b7 integrins and the HIV co-receptor CCR5.Conclusion: These results demonstrate that the experimental DNA-C/NYVAC-C HIV vaccine regimen induces the homing of potentially protective HIV-specific CD4 and CD8 T cells in the gut, the port of entry of HIV and one of the major sites for HIV spreading and depletion of CD4 T cells.
Resumo:
Olivine nephelinites commonly contain macrocrysts of olivine and clinopyroxene. Some of these macrocrysts might represent fragments of the source region of the host magma transported to the Earth surface. If this hypothesis is correct these fragments can be used to characterize the composition of the source region and to put constraints on the magma generation process. In this study, we investigate the origin of macrocrysts and mineral aggregates from an olivine nephelinite from the Kaiserstuhl, Germany. We focus on clinopyroxenes (Cpx), which can be divided into three groups. Cpx I is relict Cpx from aggregates with deformed olivine that is depleted in Ca and characterized by strong light rare earth element (LREE) fractionation, low Ti/Eu and negative high field strength element (HFSE) anomalies. Its geochemical signature is consistent with formation by carbonatite metasomatism and with equilibration in the Presence of orthopyroxene. Cpx II is Ca-rich Cpx, forming both aggregates with deformed olivine and individual macrocrysts. The LREE, as for Cpx I, are strongly fractionated. Convex REE patterns may be present. The depletion in HFSE is less pronounced. Cpx III is oscillatory zoned Cpx phenociysis showing enrichment in Ca, convex REE patterns and no HFSE anomalies. The transition in the trace element abundances between the Cpx of the three groups is gradual. However, Cpx I and H did not crystallize from the host magma, as demonstrated by the presence of kink-bands and undulose extinction in the associated olivine and by the composition of alkali aluminosilicate glass inclusions in Cpx H. Based on the Cpx relationships, we interpret the studied suite of macrocrysts and mineral aggregates as a mixture of disintegrated fragments of the source region of the host olivine nephelinite. The process of melt generation was multi-stage. A primary carbonatite melt ascending from deeper levels in the mantle, probably from the dolomite-garnet peridotite stability field, reacted with mantle peridotite along the solidus ledge in the system lherzolite-CO2 (< 20-22 kbar) and started to crystallize carbonate minerals. Because of its low solidus temperature, the resulting carbonate-wehrlite assemblage melted incongruently with the formation of additional clinopyroxene. The carbonatite melt evolved during crystallization of carbonate minerals and concomitant incongruent melting of the carbonate-wehrlite, accompanied by the segregation of incipient alkali aluminosilicate melts. As a consequence of fast reaction rates in the presence of a carbonatite melt, this process probably took place under disequilibrium conditions. Further melting of the assemblage wehrlite + alkali aluminosilicate melt led to the generation of the olivine nephelinite magma. It entrained fragments of the wehrlite and brought them to the surface.
Resumo:
The circadian clock drives the rhythmic expression of a broad array of genes that orchestrate metabolism, sleep wake behavior, and the immune response. Clock genes are transcriptional regulators engaged in the generation of circadian rhythms. The cold inducible RNA-binding protein (CIRBP) guarantees high amplitude expression of clock. The cytokines TNF and TGFβ impair the expression of clock genes, namely the period genes and the proline- and acidic amino acid-rich basic leucine zipper (PAR-bZip) clock-controlled genes. Here, we show that TNF and TGFβ impair the expression of Cirbp in fibroblasts and neuronal cells. IL-1β, IL-6, IFNα, and IFNγ do not exert such effects. Depletion of Cirbp is found to increase the susceptibility of cells to the TNF-mediated inhibition of high amplitude expression of clock genes and modulates the TNF-induced cytokine response. Our findings reveal a new mechanism of cytokine-regulated expression of clock genes.
Resumo:
In this study, we show that a chemical dye, malachite green (MG), which is commonly used in the fish industry as an antifungal, antiparasitic, and antibacterial agent, could effectively kill Candida albicans and non-C. albicans species. We have demonstrated that Candida cells are susceptible to MG at a very low concentration (MIC that reduces growth by 50% [MIC(50)], 100 ng ml(-1)) and that the effect of MG is independent of known antifungal targets, such as ergosterol metabolism and major drug efflux pump proteins. Transcriptional profiling in response to MG treatment of C. albicans cells revealed that of a total of 207 responsive genes, 167 genes involved in oxidative stress, virulence, carbohydrate metabolism, heat shock, amino acid metabolism, etc., were upregulated, while 37 genes involved in iron acquisition, filamentous growth, mitochondrial respiration, etc., were downregulated. We confirmed experimentally that Candida cells exposed to MG resort to a fermentative mode of metabolism, perhaps due to defective respiration. In addition, we showed that MG triggers depletion of intracellular iron pools and enhances reactive oxygen species (ROS) levels. These effects could be reversed by the addition of iron or antioxidants, respectively. We provided evidence that the antifungal effect of MG is exerted through the transcription regulators UPC2 (regulating ergosterol biosynthesis and azole resistance) and STP2 (regulating amino acid permease genes). Taken together, our transcriptome, genetic, and biochemical results allowed us to decipher the multiple mechanisms by which MG exerts its anti-Candida effects, leading to a metabolic shift toward fermentation, increased generation of ROS, labile iron deprivation, and cell necrosis.
Resumo:
Cell-to-cell communication mediated by gap junctions made of Connexin36 (Cx36) contributes to pancreatic β-cell function. We have recently demonstrated that Cx36 also supports β-cell survival by a still unclear mechanism. Using specific Cx36 siRNAs or adenoviral vectors, we now show that Cx36 downregulation promotes apoptosis in INS-1E cells exposed to the pro-inflammatory cytokines (IL-1β, TNF-α and IFN-γ) involved at the onset of type 1 diabetes, whereas Cx36 overexpression protects against this effect. Cx36 overexpression also protects INS-1E cells against endoplasmic reticulum (ER) stress-mediated apoptosis, and alleviates the cytokine-induced production of reactive oxygen species, the depletion of the ER Ca(2+) stores, the CHOP overexpression and the degradation of the anti-apoptotic protein Bcl-2 and Mcl-1. We further show that cytokines activate the AMP-dependent protein kinase (AMPK) in a NO-dependent and ER-stress-dependent manner and that AMPK inhibits Cx36 expression. Altogether, the data suggest that Cx36 is involved in Ca(2+) homeostasis within the ER and that Cx36 expression is downregulated following ER stress and subsequent AMPK activation. As a result, cytokine-induced Cx36 downregulation elicits a positive feedback loop that amplifies ER stress and AMPK activation, leading to further Cx36 downregulation. The data reveal that Cx36 plays a central role in the oxidative stress and ER stress induced by cytokines and the subsequent regulation of AMPK activity, which in turn controls Cx36 expression and mitochondria-dependent apoptosis of insulin-producing cells.
Resumo:
BACKGROUND: Structural mutations (SMs) play a major role in cancer development. In some cancers, such as breast and ovarian, DNA double-strand breaks (DSBs) occur more frequently in transcribed regions, while in other cancer types such as prostate, there is a consistent depletion of breakpoints in transcribed regions. Despite such regularity, little is understood about the mechanisms driving these effects. A few works have suggested that protein binding may be relevant, e.g. in studies of androgen receptor binding and active chromatin in specific cell types. We hypothesized that this behavior might be general, i.e. that correlation between protein-DNA binding (and open chromatin) and breakpoint locations is common across divergent cancers. RESULTS: We investigated this hypothesis by comprehensively analyzing the relationship among 457 ENCODE protein binding ChIP-seq experiments, 125 DnaseI and 24 FAIRE experiments, and 14,600 SMs from 8 diverse cancer datasets covering 147 samples. In most cancers, including breast and ovarian, we found enrichment of protein binding and open chromatin in the vicinity of SM breakpoints at distances up to 200 kb. Furthermore, for all cancer types we observed an enhanced enrichment in regions distant from genes when compared to regions proximal to genes, suggesting that the SM-induction mechanism is independent from the bias of DSBs to occur near transcribed regions. We also observed a stronger effect for sites with more than one protein bound. CONCLUSIONS: Protein binding and open chromatin state are associated with nearby SM breakpoints in many cancer datasets. These observations suggest a consistent mechanism underlying SM locations across different cancers.
Resumo:
The breast epithelium has two major compartments, luminal and basal cells, that are established and maintained by poorly understood mechanisms. The p53 homolog, p63, is required for the formation of mammary buds, but its function in the breast after birth is unknown. We show that in primary human breast epithelial cells, maintenance of basal cell characteristics depends on continued expression of the p63 isoform, DeltaNp63, which is expressed in the basal compartment. Forced expression of DeltaNp63 in purified luminal cells confers a basal phenotype. Notch signaling downmodulates DeltaNp63 expression and mimics DeltaNp63 depletion, whereas forced expression of DeltaNp63 partially counteracts the effects of Notch. Consistent with Notch activation specifying luminal cell fate in the mammary gland, Notch signaling activity is specifically detected in mice at sites of pubertal ductal morphogenesis where luminal cell fate is determined. Basal cells in which Notch signaling is active show decreased p63 expression. Both constitutive expression of DeltaNp63 and ablation of Notch signaling are incompatible with luminal cell fate. Thus, the balance between basal and luminal cell compartments of the breast is regulated by antagonistic functions of DeltaNp63 and Notch.Cell Death and Differentiation advance online publication, 9 April 2010; doi:10.1038/cdd.2010.37.
Resumo:
The purpose of this study was to assess the diagnostic potential of urinary metanephrines and 3-methoxytyramine compared to urinary catecholamine determination in diagnosing antemortem cold exposure and fatal hypothermia. 83 cases of fatal hypothermia and 144 control cases were included in this study. Catecholamines (adrenaline, noradrenaline and dopamine), metanephrines (metanephrine, normetanephrine) and 3-methoxytyramine were measured in urine collected during autopsy. All tested analytes were significantly higher in hypothermia cases compared to control subjects and displayed a generally satisfying discriminative value, thus indicating urinary catecholamines and their metabolites as reliable markers of cold-related stress and hypothermia related-deaths. Metanephrine and adrenaline had the best discriminative value between hypothermia and control cases compared to other tested analytes, though with different sensitivity and specificity. These can therefore be considered the most suitable markers of cold-related stress.
Resumo:
Salt taste in mammals can trigger two divergent behavioural responses. In general, concentrated saline solutions elicit robust behavioural aversion, whereas low concentrations of NaCl are typically attractive, particularly after sodium depletion. Notably, the attractive salt pathway is selectively responsive to sodium and inhibited by amiloride, whereas the aversive one functions as a non-selective detector for a wide range of salts. Because amiloride is a potent inhibitor of the epithelial sodium channel (ENaC), ENaC has been proposed to function as a component of the salt-taste-receptor system. Previously, we showed that four of the five basic taste qualities-sweet, sour, bitter and umami-are mediated by separate taste-receptor cells (TRCs) each tuned to a single taste modality, and wired to elicit stereotypical behavioural responses. Here we show that sodium sensing is also mediated by a dedicated population of TRCs. These taste cells express the epithelial sodium channel ENaC, and mediate behavioural attraction to NaCl. We genetically engineered mice lacking ENaCalpha in TRCs, and produced animals exhibiting a complete loss of salt attraction and sodium taste responses. Together, these studies substantiate independent cellular substrates for all five basic taste qualities, and validate the essential role of ENaC for sodium taste in mice.
Resumo:
The pathophysiological role of an increase in circulating vasopressin in sustaining global and regional vasoconstriction in patients with congestive heart failure has not been established, particularly in patients with hyponatraemia. To assess this further, 20 patients with congestive heart failure refractory to digoxin and diuretics were studied before and 60 minutes after the intravenous injection (5 micrograms/kg) of the vascular antagonist of vasopressin [1(beta-mercapto-beta,beta-cyclopentamethylene-propionic acid), 2-(0-methyl) tyrosine] arginine vasopressin. Ten patients were hyponatraemic (plasma sodium less than 135 mmol/l) and 10 were normonatraemic. In both groups of patients the vascular vasopressin antagonist did not alter systemic or pulmonary artery pressures, right atrial pressure, pulmonary capillary wedge pressure, cardiac index, or vascular resistances. Furthermore, there was no change in skin and hepatic blood flow in either group after the injection of the vascular antagonist. Only one patient in the hyponatraemic group showed considerable haemodynamic improvement. He had severe congestive heart failure and a high concentration of plasma vasopressin (51 pmol/l). Plasma renin activity, vasopressin, or catecholamine concentrations were not significantly changed in response to the administration of the vasopressin antagonist in either the hyponatraemic or the normonatraemic groups. Patients with hyponatraemia, however, had higher baseline plasma catecholamine concentrations, heart rate, pulmonary pressure and resistance, and lower hepatic blood flow than patients without hyponatraemia. Plasma vasopressin and plasma renin activity were slightly, though not significantly, higher in the hyponatraemic group. Thus the role of vasopressin in sustaining regional or global vasoconstriction seems limited in patients with congestive heart failure whether or not concomitant hyponatraemia is present. Vasopressin significantly increases the vascular tone only in rare patients with severe congestive heart failure and considerably increased vasopressin concentrations. Patients with hyponatraemia do, however, have raised baseline catecholamine concentrations, heart rate, pulmonary arterial pressure and resistance, and decreased hepatic blood flow.
Resumo:
AIMS: The aim of this article is to review the forensic literature covering the postmortem investigations that are associated with alcoholic ketoacidosis fatalities and report the results of our own analyses. METHODS: Eight cases of suspected alcoholic ketoacidosis that had undergone medico-legal investigations in our facility from 2011 to 2013 were retrospectively selected. A series of laboratory parameters were measured in whole femoral blood, postmortem serum from femoral blood, urine and vitreous humor in order to obtain a more general overview on the biochemical and metabolic changes that occur during alcoholic ketoacidosis. Most of the tested parameters were chosen among those that had been described in clinical and forensic literature associated with alcoholic ketoacidosis and its complications. RESULTS: Ketone bodies and carbohydrate-deficient transferrin levels were increased in all cases. Biochemical markers of generalized inflammation, volume depletion and undernourishment showed higher levels. Adaptive endocrine reactions involving insulin, glucagon, cortisol and triiodothyronine were also observed. CONCLUSIONS: Metabolic and biochemical disturbances characterizing alcoholic ketoacidosis can be reliably identified in the postmortem setting. The correlation of medical history, autopsy findings and biochemical results proves therefore decisive in identifying pre-existing disorders, excluding alternative causes of death and diagnosing alcoholic ketoacidosis as the cause of death.
Resumo:
Proteomics has come a long way from the initial qualitative analysis of proteins present in a given sample at a given time ("cataloguing") to large-scale characterization of proteomes, their interactions and dynamic behavior. Originally enabled by breakthroughs in protein separation and visualization (by two-dimensional gels) and protein identification (by mass spectrometry), the discipline now encompasses a large body of protein and peptide separation, labeling, detection and sequencing tools supported by computational data processing. The decisive mass spectrometric developments and most recent instrumentation news are briefly mentioned accompanied by a short review of gel and chromatographic techniques for protein/peptide separation, depletion and enrichment. Special emphasis is placed on quantification techniques: gel-based, and label-free techniques are briefly discussed whereas stable-isotope coding and internal peptide standards are extensively reviewed. Another special chapter is dedicated to software and computing tools for proteomic data processing and validation. A short assessment of the status quo and recommendations for future developments round up this journey through quantitative proteomics.