223 resultados para binding free enthalpy
Resumo:
CD1d tetramers loaded with alpha-galactosylceramide (alpha-GalCer) bind selectively to mouse invariant Valpha14 (Valpha14i) NKT cells and their human counterparts. Whereas tetramer binding strictly depends on the expression of a Valpha14-Jalpha18 chain in murine NKT cells, the associated beta-chain (typically expressing Vbeta8.2 or Vbeta7) appears not to influence tetramer binding. In this study, we describe novel alpha-GalCer-loaded mouse and human CD1d-IgG1 dimers, which revealed an unexpected influence of the TCR-beta chain on the avidity of CD1d:alpha-GalCer binding. A subset of Valpha14i NKT cells clearly discriminated alpha-GalCer bound to mouse or human CD1d on the basis of avidity differences conferred by the Vbeta domain of the TCR-beta chain, with Vbeta8.2 conferring higher avidity binding than Vbeta7.
Resumo:
Navigator-gated and corrected 3D coronary MR angiography (MRA) allows submillimeter image acquisition during free breathing. However, cranial diaphragmatic drift and relative phase shifts of chest-wall motion are limiting factors for image quality and scanning duration. We hypothesized that image acquisition in the prone position would minimize artifacts related to chest-wall motion and suppress diaphragmatic drift. Twelve patients with radiographically-confirmed coronary artery disease and six healthy adult volunteers were studied in both the prone and the supine position during free-breathing navigator-gated and corrected 3D coronary MRA. Image quality and the diaphragmatic positions were objectively compared. In the prone position, there was a 36% improvement in signal-to-noise ratio (SNR; 15.5 +/- 2.7 vs. 11.4 +/- 2.6; P < 0.01) and a 34% improvement in CNR (12.5 +/- 3.3 vs. 9.3 +/- 2.5, P < 0.01). The prone position also resulted in a 17% improvement in coronary vessel definition (P < 0.01). Cranial end-expiratory diaphragmatic drift occurred less frequently in the prone position (23% +/- 17% vs. 40% +/- 26% supine; P <0.05), and navigator efficiency was higher. Prone coronary MRA results in improved SNR and CNR with enhanced coronary vessel definition. Cranial end-expiratory diaphragmatic drift also was reduced, and navigator efficiency was enhanced. When feasible, prone imaging is recommended for free-breathing coronary MRA.
Resumo:
We have described previously a transcription-dependent induction of glycogen resynthesis by the vasoactive intestinal peptide (VIP) or noradrenaline (NA) in astrocytes, which is mediated by cAMP. Because it has been postulated that the cAMP-mediated regulation of energy balance in hepatocytes and adipocytes is channeled at least in part through the CCAAT/enhancer binding protein (C/EBP) family of transcription factors, we tested the hypothesis that C/EBP isoforms could be expressed in mouse cortical astrocytes and that their level of expression could be regulated by VIP, by the VIP-related neuropeptide pituitary adenylate cyclase-activating peptide (PACAP), or by NA. We report in this study that in these cells, C/EBP beta and C/EBP delta are induced by VIP, PACAP, or NA via the cAMP second-messenger pathway. Induction of C/EBP beta and -delta mRNA by VIP occurs in the presence of a protein synthesis inhibitor. Thus, c/ebp beta and c/ebp delta behave as cAMP-inducible immediate-early genes in astrocytes. Moreover, transfection of astrocytes with expression vectors selectively producing the transcriptionally active form of C/EBP beta, termed liver-enriched transcriptional activator protein, or C/EBP delta enhance the glycogen resynthesis elicited by NA, whereas an expression vector producing the transcriptionally inactive form of C/EBP beta, termed liver-enriched transcriptional inhibitory protein, reduces this resynthesis. These results support the idea that C/EBP beta and -delta regulate gene expression of energy metabolism-related enzymes in astrocytes.
Resumo:
Rapport de synthèse : Introduction : La perfusion isolée du poumon à l'aide de Doxorubicine libre et une nouvelle forme de Doxorubicine liposomale pégylée (Liporubicine) est comparé en terme de pénétration et accumulation de Doxorubicine dans le tissu tumoral et pulmonaire dans un modèle de rats porteurs de tumeur sarcomateuse au niveau du poumon gauche. Matériel et méthode : Une tumeur sarcomateuse unique a été générée dans le poumon gauche de 39 Fischer rats, suivi 10 jours plus tard, par une perfusion isolée du poumon gauche (n =36) avec Doxorubicine libre (n=18) et Liporubicine (n=18) à une dose de 100 µg (n=9) et 400 µg (n=9) pour chaque formulation de Doxorubicine. Dans chaque poumon perfusé, la concentration de l'agent cytostatique et sa distribution ont été investiguées dans la tumeur et trois parties du poumon normal par HLPC (n=6) et par microscopie de florescence (n=3). Des analyses histologiques et inmunohistochimiques (facteur von Willebrand) ont été effectuées sur trois animaux non traités. Résultats : Les tumeurs sarcomateuses dans les animaux de contrôle démontraient une bonne vascularisation avec de fines branches capillaires qui étaient présentes partout dans les tumeurs. La perfusion isolée du poumon démontrait une distribution de l'agent cytostatique d'une manière hétérogène dans le poumon perfusé et une concentration de Doxorubicine inférieure dans les tumeurs par rapport au tissu pulmonaire sein pour les deux formulations de Doxorubicine et les deux doses appliquées. La perfusion isolée du poumon avec Doxorubicine libre démontrait une concentration significativement plus élevée que Liporubicine dans la tumeur et le parenchyme pulmonaire pour les deux doses appliquées (p < 0,01). Néanmoins, le coefficient de concentration tumorale et pulmonaire était plus bas pour Doxorubicine libre que pour Liporubicine pour une dose de 100 µg (0.27 ± 0.1 vs 0.53 ± 0.5, p=0.23) tandis qu'il était similaire pour les deux formulations de Doxorubicine à une dose de 400 µg (0.67 ± 0.2 vs 0.54 ± 0.2, p=0.34). Les deux formulations de Doxorubicine émergeaient un signal de fluorescence provenant de tous les compartiments du parenchyme pulmonaire mais seulement un signal sporadique et faible émergeant des tumeurs, provenant de la périphérie de la tumeur et des vaisseaux situés à l'intérieur de la tumeur, pour les deux doses appliquées. Conclusion : La perfusion isolée du poumon démontrait une distribution hétérogène de la Doxorubicine et sa forme liposomale dans le poumon perfusé et une accumulation plus faible dans la tumeur que dans le tissu parenchymateux adjacent pour les deux formulations de Doxorubicine et les deux doses appliquées.
Resumo:
BACKGROUND: Plasma free and urinary metanephrines are recognized biomarkers for the assessment of pheochromocytoma. Plasma total metanephrines with a long half-life may represent another useful biomarker. OBJECTIVE: The aim of this study is to evaluate the diagnostic performances of plasma total metanephrines alone or combined with free metanephrines and fractionated 24-h urinary metanephrines. METHODS: A retrospective, case-control diagnostic test study was conducted between 1999 and 2007 in two university hospitals in Switzerland and two institutions in France. The patients included 46 cases with histologically proven pheochromocytoma, and 181 controls suspected of tumor with negative investigations and 3-year follow-up. None had renal dysfunction. Sensitivity and specificity were compared after expressing each measurement result as a ratio over its upper reference limit, adding the ratios of normetanephrine and metanephrine, and defining cut-off values of 1 or 2 for this sum. RESULTS: Applying a cut-off value of 1, plasma free and total metanephrines and urinary fractionated metanephrines had similar sensitivities of 96% (95% confidence interval, 86-99%), 95% (85-99%), and 95% (84-99%) along with similar specificities of 89% (83-94%), 91% (84-95%), and 86% (80-91%). A cut-off of 2 for the sum of ratios over reference limit improves the specificity, and it can be used for a confirmation test based on another biomarker taken among the three biomarkers. CONCLUSION: All three metanephrine-based tests perform equivalently for diagnosing pheochromocytoma in the absence of renal insufficiency, and can be conveniently associated two by two for confirming/excluding tumor.
Resumo:
Site-directed mutagenesis and molecular dynamics analysis of the 3-D model of the alpha1B-adrenergic receptor (AR) were combined to identify the molecular determinants of the receptor involved in catecholamine binding. Our results indicate that the three conserved serines in the fifth transmembrane domain (TMD) of the alpha1B-AR play a distinct role in catecholamine binding versus receptor activation. In addition to the amino acids D125 in TMDIII and S207 in TMDV directly involved in ligand binding, our findings identify a large number of polar residues playing an important role in the activation process of the alpha1B-AR thus providing new insights into the structure/function relationship of G protein-coupled receptors.
Resumo:
B cell activating factor of the tumor necrosis factor (TNF) family (BAFF) and a proliferation-inducing ligand (APRIL) are closely related ligands within the TNF superfamily that play important roles in B lymphocyte biology. Both ligands share two receptors--transmembrane activator and calcium signal--modulating cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA)--that are predominantly expressed on B cells. In addition, BAFF specifically binds BAFF receptor, whereas the nature of a postulated APRIL-specific receptor remains elusive. We show that the TNF homology domain of APRIL binds BCMA and TACI, whereas a basic amino acid sequence (QKQKKQ) close to the NH2 terminus of the mature protein is required for binding to the APRIL-specific "receptor." This interactor was identified as negatively charged sulfated glycosaminoglycan side chains of proteoglycans. Although T cell lines bound little APRIL, the ectopic expression of glycosaminoglycan-rich syndecans or glypicans conferred on these cells a high binding capacity that was completely dependent on APRIL's basic sequence. Moreover, syndecan-1-positive plasma cells and proteoglycan-rich nonhematopoietic cells displayed high specific, heparin-sensitive binding to APRIL. Inhibition of BAFF and APRIL, but not BAFF alone, prevented the survival and/or the migration of newly formed plasma cells to the bone marrow. In addition, costimulation of B cell proliferation by APRIL was only effective upon APRIL oligomerization. Therefore, we propose a model whereby APRIL binding to the extracellular matrix or to proteoglycan-positive cells induces APRIL oligomerization, which is the prerequisite for the triggering of TACI- and/or BCMA-mediated activation, migration, or survival signals.
Resumo:
We have previously demonstrated that clock genes contribute to the homeostatic aspect of sleep regulation. Indeed, mutations in some clock genes modify the markers of sleep homeostasis and an increase in homeostatic sleep drive alters clock gene expression in the forebrain. Here, we investigate a possible mechanism by which sleep deprivation (SD) could alter clock gene expression by quantifying DNA-binding of the core-clock transcription factors CLOCK, NPAS2, and BMAL1 to the cis-regulatory sequences of target clock genes in mice. Using chromatin immunoprecipitation (ChIP), we first showed that, as reported for the liver, DNA-binding of CLOCK and BMAL1 to target clock genes changes in function of time-of-day in the cerebral cortex. Tissue extracts were collected at ZT0 (light onset), -6, -12, and -18, and DNA enrichment of E-box or E'-box containing sequences was measured by qPCR. CLOCK and BMAL1 binding to Cry1, Dbp, Per1, and Per2 depended on time-of-day, with maximum values reached at around ZT6. We then observed that SD, performed between ZT0 and -6, significantly decreased DNA-binding of CLOCK and BMAL1 to Dbp, consistent with the observed decrease in Dbp mRNA levels after SD. The DNA-binding of NPAS2 and BMAL1 to Per2 was also decreased by SD, although SD is known to increase Per2 expression in the cortex. DNA-binding to Per1 and Cry1 was not affected by SD. Our results show that the sleep-wake history can affect the clock molecular machinery directly at the level of chromatin binding thereby altering the cortical expression of Dbp and Per2 and likely other targets. Although the precise dynamics of the relationship between DNA-binding and mRNA expression, especially for Per2, remains elusive, the results also suggest that part of the reported circadian changes in DNA-binding of core clock components in tissues peripheral to the suprachiasmatic nuclei could, in fact, be sleep-wake driven.
Resumo:
An important activity of mucosal surfaces is the production of antibodies (Abs) referred to as secretory immunoglobulin A (SIgA) that serve as a first line of defense to repel pathogenic microorganisms and provide a finely tuned balance to guarantee controlled survival of essential commensal bacteria. By excluding bacteria from the epithelial cell, SIgA participates in the cross-talk between the host and its intestinal content, ensuring appropriate homeostasis under normal conditions. Besides the classical view of immune exclusion function, SIgA Abs exhibit the striking feature to adhere to gastrointestinal M cells residing in the follicle-associated epithelium in organized structures called Peyer's patches. Selective binding of SIgA results in transport across the microfold (M) cells, a process that facilitates the association of the Ab with dendritic cells (DCs) located in the underlying subepithelial dome region of Peyer's patches. Limited entry of free SIgA and SIgA-coated bacteria via this pathway is crucial to the modulation of local immune responses in an environment that limits the onset of pro-inflammatory circuits. Such a mechanism would ensure homeostasis by allowing antigen recognition under neutralized conditions and by avoiding tissue dissemination, two features that endow SIgA with non-inflammatory properties in the mucosal environment.
Resumo:
A case of meibomian carcinoma of the left eyelid is reported in a 72-year-old female patient. The tumor had been present on the left eyelid for months. Clinically, the tumor appeared as a reddish mass implanted on the external part of the free margin of the left superior eyelid. An excisional biopsy disclosed meibomian carcinoma. A total resection of the left superior eyelid was followed by plastic surgery. Results after a one-month follow-up were very satisfactory. This case is emphasizes the importance of an early diagnosis which enabled us to perform a rather conservative treatment limited to the removal of the affected eyelid. The diagnosis of meibomian carcinoma is infrequent but it must be kept in mind in cases of tumor without the typical clinical characteristics of a basal cell or squamous cell carcinoma. Complete removal surgery may bring a curative effect and histopathology has a key role in the diagnosis of meibomian carcinoma.
Resumo:
T cell migration, essential for immune surveillance and response, is mediated by the integrin LFA-1. CatX, a cysteine carboxypeptidase, is involved in the regulation of T cell migration by interaction with LFA-1. We show that sequential cleavage of C-terminal amino acids from the β(2) cytoplasmic tail of LFA-1, by CatX, enhances binding of the adaptor protein talin to LFA-1 and triggers formation of the latter's high-affinity form. As shown by SPR analysis of peptides constituting the truncated β(2) tail, the cleavage of three C-terminal amino acids by CatX resulted in a 1.6-fold increase of talin binding. Removal of one more amino acid resulted in a 2.5-fold increase over the intact tail. CatX cleavage increased talin-binding affinity to the MD but not the MP talin-binding site on the β(2) tail. This was shown by molecular modeling of the β(2) tail/talin F3 complex to be a result of conformational changes affecting primarily the distal-binding site. Analysis of LFA-1 by conformation-specific mAb showed that CatX modulates LFA-1 affinity, promoting formation of high-affinity from intermediate-affinity LFA-1 but not the initial activation of LFA-1 from a bent to extended form. CatX post-translational modifications may thus represent a mechanism of LFA-1 fine-tuning that enables the trafficking of T cells.
Resumo:
BACKGROUND AIMS: Marked changes in metabolism, including liver steatosis and hypoglycemia, occur after partial hepatectomy. Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a nuclear hormone receptor that is activated by fatty acids and involved in hepatic fatty acid metabolism and regeneration. Liver fatty acid binding protein (LFABP) is an abundant protein in liver cytosol whose expression is regulated by PPAR alpha. It is involved in fatty acid uptake and diffusion and in PPAR alpha signaling. The aim of this study was to investigate the expression of PPAR alpha and LFABP during liver regeneration. METHODS: Male Sprague-Dawley rats and male C57 Bl/6 mice were subjected to 2/3 hepatectomy and LFABP and PPAR alpha mRNA and protein levels were measured at different time points after surgery. The effect of partial hepatectomy was followed during 48 h in rats and 72 h in mice. RESULTS: PPAR alpha mRNA and protein levels were decreased 26 h after hepatectomy of rats. The LFABP mRNA and protein levels paralleled those of PPAR alpha and were also decreased 26 h after hepatectomy. In mice, the mRNA level was decreased after 36 and 72 h after hepatectomy. In this case, LFABP mRNA levels decreased more slowly after partial hepatectomy than in rats. CONCLUSIONS: A marked decrease in PPAR alpha expression may be important for changed gene expression, e.g. LFABP, and metabolic changes, such as hypoglycemia, during liver regeneration.