440 resultados para ZETA-FUNCTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extraordinary sensitivity of CD8+ T cells to recognize antigen impinges to a large extent on the coreceptor CD8. While several studies have shown that the CD8beta chain endows CD8 with efficient coreceptor function, the molecular basis for this is enigmatic. Here we report that cell-associated CD8alphabeta, but not CD8alphaalpha or soluble CD8alphabeta, substantially increases the avidity of T cell receptor (TCR)-ligand binding. To elucidate how the cytoplasmic and transmembrane portions of CD8beta endow CD8 with efficient coreceptor function, we examined T1.4 T cell hybridomas transfected with various CD8beta constructs. T1.4 hybridomas recognize a photoreactive Plasmodium berghei circumsporozoite (PbCS) peptide derivative (PbCS (4-azidobezoic acid [ABA])) in the context of H-2K(d), and permit assessment of TCR-ligand binding by TCR photoaffinity labeling. We find that the cytoplasmic portion of CD8beta, mainly due to its palmitoylation, mediates partitioning of CD8 in lipid rafts, where it efficiently associates with p56(lck). In addition, the cytoplasmic portion of CD8beta mediates constitutive association of CD8 with TCR/CD3. The resulting TCR-CD8 adducts exhibit high affinity for major histocompatibility complex (MHC)-peptide. Importantly, because CD8alphabeta partitions in rafts, its interaction with TCR/CD3 promotes raft association of TCR/CD3. Engagement of these TCR/CD3-CD8/lck adducts by multimeric MHC-peptide induces activation of p56(lck) in rafts, which in turn phosphorylates CD3 and initiates T cell activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The activity of melanopsin containing intrinsically photosensitive ganglion retinal cells (ipRGC) can be assessed by a means of pupil responses to bright blue (appr.480 nm) light. Due to age related factors in the eye, particularly, structural changes of the lens, less light reaches retina. The aim of this study was to examine how age and in vivo measured lens transmission of blue light might affect pupil light responses, in particular, mediated by the ipRGC. METHODS: Consensual pupil responses were explored in 44 healthy subjects aged between 26 and 68 years. A pupil response was recorded to a continuous 20 s light stimulus of 660 nm (red) or 470 nm (blue) both at 300 cd/m2 intensity (14.9 and 14.8 log photons/cm2/s, respectively). Additional recordings were performed using four 470 nm stimulus intensities of 3, 30, 100 and 300 cd/m2. The baseline pupil size was measured in darkness and results were adjusted for the baseline pupil and gender. The main outcome parameters were maximal and sustained pupil contraction amplitudes and the postillumination response assessed as area under the curve (AUC) over two time-windows: early (0-10 s after light termination) and late (10-30 s after light termination). Lens transmission was measured with an ocular fluorometer. RESULTS: The sustained pupil contraction and the early poststimulus AUC correlated positively with age (p=0.02, p=0.0014, respectively) for the blue light stimulus condition only.The maximal pupil contraction amplitude did not correlate to age either for bright blue or red light stimulus conditions.Lens transmission decreased linearly with age (p<0.0001). The pupil response was stable or increased with decreasing transmission, though only significantly for the early poststimulus AUC to 300 cd/m2 light (p=0.02). CONCLUSIONS: Age did not reduce, but rather enhance pupil responses mediated by ipRGC. The age related decrease of blue light transmission led to similar results, however, the effect of age was greater on these pupil responses than that of the lens transmission. Thus there must be other age related factors such as lens scatter and/or adaptive processes influencing the ipRGC mediated pupil response enhancement observed with advancing age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postischemic recovery of contractile function is better in hearts from fasted rats than in hearts from fed rats. In this study, we examined whether feeding-induced inhibition of palmitate oxidation at the level of carnitine palmitoyl transferase I is involved in the mechanism underlying impaired recovery of contractile function. Hearts isolated from fasted or fed rats were submitted to no-flow ischemia followed by reperfusion with buffer containing 8 mM glucose and either 0.4 mM palmitate or 0.8 mM octanoate. During reperfusion, oxidation of palmitate was higher after fasting than after feeding, whereas oxidation of octanoate was not influenced by the nutritional state. In the presence of palmitate, recovery of left ventricular developed pressure was better in hearts from fasted rats. Substitution of octanoate for palmitate during reperfusion enhanced recovery of left ventricular developed pressure in hearts from fed rats. However, the chain length of the fatty acid did not influence diastolic contracture. The results suggest that nutritional variation of mitochondrial fatty acid transfer may influence postischemic recovery of contractile function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Le gène c-myc est un des oncogènes les plus fréquemment mutés dans les tumeurs humaines. Même si plus de 70 % des cancers humains montrent une dérégulation de c-Myc, les connaissances sur son rôle physiologique pendant le développement, et dans la souris adulte restent très peu connus. Récemment, notre laboratoire a pu montrer que c-Myc contrôle l'équilibre entre le renouvellement et la différenciation des cellules souches hématopoïetiques (CSH) dans la souris adulte. Ceci est probablement dû à lacapacité de c-Myc de contrôler l'entrée et la sortie des CSH de leur niche de la moelle osseuse, en régulant plusieurs molécules d'adhésion, parmi lesquelles la cadhérine-N (Wilson et al., 2004; Wilson and Trumpp, 2006). Des études utilisant un mutant d'inactivation ont demontré que la protéine c-Myc est essentielle pour le développement au delà du jour embryonnaire E9.5. Les embryons c-Myc déficients sont plus petits que la normale et possèdent de nombreux défauts; en particulier ils ne peuvent établir un système hématopoietique embryonnaire primitif (Trumpp et al., 2001). Nous avons récemment découvert que le développement du placenta dépend de la présence de cMyc. Ceci permet de proposer que certains, sinon tous, les défauts embryonnaires puorraient dériver indirectement d'un défaut nutritionnel causé par la défaillance du placenta. Afin de répondre à cette question de manière génétique, nous avons utilisé l'allele conditionel c-mycflox (Trumpp et al., 2001) en combinaison avec l'allele Sox2-Cre (Hayashi et al., 2002). Celui-ci détermine l'expression de la récombinase Cre spécifiquement dans les cellules de l'épiblaste à partir de E6.5, tandis qu'il n'y a pas, ou seulement très peu, d'activité de la récombinase Cre dans les tissus extraembryonnaires.Alnsi, cette stratégie nous permet de générer des embryons sans c-Myc qui se développent en présence d'un compartment extraembryonnaire ou c-Myc est exprimé normalement (Sox2Cre;c-mycflox2) Ces embryons, Sox2Cre;c-mycflox2 se développent et grandissent normalement tout en formant un système vasculaire normal, mais meurent à E11.5 à cause d'un sévère manque de cellules hématopoïetiques. De façon très intéressante, la seule population qui semble être présente en nombre à peu près normal dans ces embryons est celle des précurseurs et des cellules souches. Les cellules qui forment cette population prolifèrent normalement mais ne peuvent pas former des colonies in vitro, ce qui montre que ces cellules ont perdu leur activité de cellules souches. Cependant, lorsque nous avons analysé ces cellules plus en détail en éxaminant l'expression des molécules d'intégrine nous avons découvert que l'integrine ß est sur-éxprimée à la surface des cellules c-Myc déficientes. Ceci pourrait indiquer un mécanisme par lequel c-Myc régule des molécules d'adhésion sur les cellules du sang. En conséquence, en absence de c-Myc, l'adhésion et la migration des cellules du sang de l'AGM (Aorte-Gonade-Mésonéphros) vers le foie de l'embryon, à travers le système vasculaire, est compromise. En outre, nous avons pu montrer que les hépatocytes du foie, qui constitue le site principal de formation des cellules hématopoïetiques pendant le développement, est sévèrement atteint dans des Sox2Cre;c-mycflox2 embryons. Ceci n'est pas du à un défaut propre aux cellules hépatiques qui ont perdu c-Myc, mais résulte plutôt de l'absence de cellules hématopoietïques qui normalement colonisent le foie à ce stade du développement. Ces résultats représentent la première preuve directe que le développement des hépatoblastes est dépendant de signaux provenant des cellules du sang. Summary The myc gene is one of the most frequently mutated oncogenes in human tumors. It is found to be mis-regulated in over 70% of all human cancers. However, our knowledge about its physiological role in mammalian development and adulthood remains limited. Recent work in our laboratory showed that c-Myc controls the balance between hematopoietic stem cell (HSC) self-renewal and differentiation in the adult mouse. This is likely due to the capacity of c-Myc to control entry and exit of HSCs from the bone marrow niche by regulating a number of cell adhesion molecules including N-cadherin (Wilson et al., 2004; Wilson and Trumpp 2006). During development knockout studies showed that c-Myc is required for embryonic development beyond embryonic day (E) 9.5. c-Myc deficient embryos are severely reduced in size and show multiple defects including the failure to establish a primitive hematopoietic system (Trumpp et al., 2001). Importantly, we recentry uncovered that placental development also seems to depend on normal c-Myc function, raising the possibility that some if not all of the embryonic defects observed could be mediated indirectly by a nutrition defect caused by placental failure. To address this possibility genetically, we took advantage of the conditional c-mycflox allele (Trumpp et al., 2001) in combination with the Sox2-Cre allele (Hayashi et al., 2002), in which Cre expression is specifically targeted to all epiblast cells by E6.5, while there is little or no Cre activity inextra-embryonic lineages. Thus, this strategy allows the generation of c-Myc deficient embryos, which develop within a normal c-Myc expressing extra-embryonic compartment (Sox2Cre;c-mycflox2) Such Sox2Cre;c-mycflox2 embryos develop and grow appropriately and form a normal vascular system but die at E11.5 due to a severe lack of blood cells. Interestingly, the only hematopoietic population that seems to be present in almost normal numbers in the embryo is the stem/progenitor cell population. Cells within this populatíon proliferate normal but can not give rise to hematopoietic colonies in vitro showing that functional hematopoietic stem cell (HSC) activity is lost. However, when we analyzed these phenotypic HSCs in more detail and examined integrin expression in mutant stem/progenitor cells, we observed that ß1-integrin is upregulated. This may point to a potential mechanism whereby c-Myc regulates adhesíon molecules on hematopoietic cells and thereby disturbs adhesion and migration from the AGM (aorta-gonads-mesonephros) through the vascular system to the liver. Furthermore, we uncovered that the fetal liver, the main site of hematopoietic expansion at that stage, is severely affected in Sox2Cre;c-mycflox2 embryos and that this is not due to a cell intrinsic defect of c-Myc deficient hepatocytes but rather due to the lack of hematopoietic cells that normally colonize the fetal liver at that stage of development. This provides first direct evidence that hepatoblast development depends on signals derived from blood cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor receptor 1 (TNFR1) and Toll-like receptors (TLRs) regulate immune and inflammatory responses. Here we show that the TNFR1-associated death domain protein (TRADD) is critical in TNFR1, TLR3 and TLR4 signaling. TRADD deficiency abrogated TNF-induced apoptosis, prevented recruitment of the ubiquitin ligase TRAF2 and ubiquitination of the adaptor RIP1 in the TNFR1 signaling complex, and considerably inhibited but did not completely abolish activation of the transcription factor NF-kappaB and mitogen-activated protein kinases 'downstream' of TNFR1. TRIF-dependent cytokine production induced by the synthetic double-stranded RNA poly(I:C) and lipopolysaccharide was lower in TRADD-deficient mice than in wild-type mice. Moreover, TRADD deficiency inhibited poly(I:C)-mediated RIP1 ubiquitination and activation of NF-kappaB and mitogen-activated protein kinase signaling in fibroblasts but not in bone marrow macrophages. Thus, TRADD is an essential component of TNFR1 signaling and has a critical but apparently cell type-specific function in TRIF-dependent TLR responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to characterize the effect of a 5 km running time trial on the neuromuscular properties of the plantar flexors. Eleven well-trained triathletes performed a series of neuromuscular tests before and immediately after the run on a 200 m indoor track. Muscle activation (twitch interpolation) and normalized EMG activity were assessed during maximal voluntary contraction (MVC) of plantar flexors. Maximal soleus H-reflexes and M-waves were evoked at rest (i.e. H (MAX) and M (MAX), respectively) and during MVC (i.e. H (SUP) and M (SUP), respectively). MVC significantly declined (-27%; P < 0.001) after the run, due to decrease in muscle activation (-8%; P < 0.05) and M (MAX)-normalized EMG activity (-13%; P < 0.05). Significant reductions in M-wave amplitudes (M (MAX): -13% and M (SUP): -16%; P < 0.05) as well as H (MAX)/M (MAX) (-37%; P < 0.01) and H (SUP)/M (SUP) (-25%; P < 0.05) ratios occurred with fatigue. Following exercise, the single twitch was characterized by lower peak torque (-16%; P < 0.001) as well as shorter contraction (-19%; P < 0.001) and half-relaxation (-24%; P < 0.001) times. In conclusion, the reduction in plantar flexors strength induced by a 5 km running time trial is caused by peripheral adjustments, which are attributable to a failure of the neuromuscular transmission and excitation-contraction coupling. Fatigue also decreased the magnitude of efferent motor outflow from spinal motor neurons to the plantar flexors and part of this suboptimal neural drive is the result of an inhibition of soleus motoneuron pool reflex excitability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy balance exerts a critical influence on reproductive function. Leptin and insulin are among the metabolic factors signaling the nutritional status of an individual to the hypothalamus, and their role in the overall modulation of the activity of GnRH neurons is increasingly recognized. As such, they participate to a more generalized phenomenon: the signaling of peripheral metabolic changes to the central nervous system. The physiological importance that the interactions occurring between peripheral metabolic factors and the central nervous system bear for the control of food intake is increasingly recognized. The central mechanisms implicated are the focus of attention of very many research groups worldwide. We review here the experimental data that suggest that similar mechanisms are at play for the metabolic control of the neuroendocrine reproductive function. It is appearing that metabolic signals are integrated at the levels of first-order neurons equipped with the proper receptors, ant that these neurons send their signals towards hypothalamic GnRH neurons which constitute the integrative element of this network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The impact of preoperative impaired left ventricular ejection fraction (EF) in octogenarians following coronary bypass surgery on short-term survival was evaluated in this study. METHODS: A total of 147 octogenarians (mean age 82.1 ± 1.9 years) with coronary artery diseases underwent elective coronary artery bypass graft between January 2000 and December 2009. Patients were stratified into: Group I (n = 59) with EF >50%, Group II (n = 59) with 50% > EF >30% and in Group III (n = 29) with 30% > EF. RESULTS: There was no difference among the three groups regarding incidence of COPD, renal failure, congestive heart failure, diabetes, and preoperative cerebrovascular events. Postoperative atrial fibrillation was the sole independent predictive factor for in-hospital mortality (odds ratio (OR), 18.1); this was 8.5% in Group I, 15.3% in Group II and 10.3% in Group III. Independent predictive factors for mortality during follow up were: decrease of EF during follow-up for more that 5% (OR, 5.2), usage of left internal mammary artery as free graft (OR, 18.1), and EF in follow-up lower than 40% (OR, 4.8). CONCLUSIONS: The results herein suggest acceptable in-hospital as well short-term mortality in octogenarians with impaired EF following coronary artery bypass grafting (CABG) and are comparable to recent literature where the mortality of younger patients was up to 15% and short-term mortality up to 40%, respectively. Accordingly, we can also state that in an octogenarian cohort with impaired EF, CABG is a viable treatment with acceptable mortality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectifs : Décrire les caractéristiques de la dysfonction endothéliale associée au risque cardiovasculaire et expliciter les mécanismes biologiques par lesquels l'exercice stimule et/ou restaure la fonction endothéliale. Actualités : La fonction endothéliale, via les effets vasculoprotecteurs du monoxyde d'azote (NO), préserve la santé cardiovasculaire. Le dysfonctionnement endothélial est un facteur prédictif de la survenue des événements cardiovasculaires. L'endothélium est donc un organe cible préventif et thérapeutique prioritaire pour diminuer le risque cardiovasculaire. Perspectives : Les études épidémiologiques mettent en évidence les bienfaits de l'exercice régulier sur la fonction endothéliale, via une action endothéliale directe. L'approche expérimentale permet aujourd'hui de mieux cerner les mécanismes biologiques protecteurs de l'exercice. L'exercice, via l'élévation des forces de cisaillement, protège et/ou normalise la fonction endothéliale en augmentant la biodisponibilité en NO soit par une stimulation de la production de NO et/ou, soit par une augmentation des défenses antioxydantes et/ou une atténuation des enzymes prooxydantes. Conclusion : La connaissance des mécanismes biologiques protecteurs de l'exercice doit permettre d'encourager la pratique d'un exercice régulier par tous pour prévenir et réduire la mortalité cardiovasculaire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Candida glabrata is an emerging opportunistic pathogen that is known to develop resistance to azole drugs due to increased drug efflux. The mechanism consists of CgPDR1-mediated upregulation of ATP-binding cassette transporters. A range of gain-of-function (GOF) mutations in CgPDR1 have been found to lead not only to azole resistance but also to enhanced virulence. This implicates CgPDR1 in the regulation of the interaction of C. glabrata with the host. To identify specific CgPDR1-regulated steps of the host-pathogen interaction, we investigated in this work the interaction of selected CgPDR1 GOF mutants with murine bone marrow-derived macrophages and human acute monocytic leukemia cell line (THP-1)-derived macrophages, as well as different epithelial cell lines. GOF mutations in CgPDR1 did not influence survival and replication within macrophages following phagocytosis but led to decreased adherence to and uptake by macrophages. This may allow evasion from the host's innate cellular immune response. The interaction with epithelial cells revealed an opposite trend, suggesting that GOF mutations in CgPDR1 may favor epithelial colonization of the host by C. glabrata through increased adherence to epithelial cell layers. These data reveal that GOF mutations in CgPDR1 modulate the interaction with host cells in ways that may contribute to increased virulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p85cdc10 is a component of the S.pombe DSC-1 complex, which is thought to mediate periodic transcription of genes in late G1. In order to understand the role of p85cdc10 in the function of this complex, we have analysed which domains of p85cdc10 are required for biological activity and the formation of a stable DSC-1 complex in vitro, both in cdc10 temperature sensitive and null backgrounds. No DSC-1 activity is found in the absence of p85cdc10 and the activity of the complex is reduced or absent in all cdc10ts mutants tested. Full biological activity and rescue of a cdc10::ura4+ null allele requires the N-terminal domain, the cdc10/SWI6 repeats and the helical C-terminal region. In the absence of p85cdc10, both the C-terminal and cdc10/SWI6 repeat domains are required for DSC-1 activity in vitro. In a cdc10ts background, rescue of DSC-1 activity and complementation of mutants, requires only expression of the C-terminal domain, though the presence of the cdc10/SWI6 motifs enhances its activity. The N-terminal domain, alone, or in combination with the cdc10/SWI6 motifs, does not have biological activity, and does not restore DSC-1 activity. We conclude that both the C-terminal domain of p85cdc10 is critical for formation of the DSC-1 complex and that the cdc10/SWI6 motifs also play a role, perhaps by stabilizing the complex. Our data also suggest that the S.pombe DSC-1 complex contains more than one molecule of p85cdc10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The MDRD (Modification of diet in renal disease) equation enables glomerular filtration rate (GFR) estimation from serum creatinine only. Thus, the laboratory can report an estimated GFR (eGFR) with each serum creatinine assessment, increasing therefore the recognition of renal failure. Predictive performance of MDRD equation is better for GFR < 60 ml/min/1,73 m2. A normal or near-normal renal function is often underestimated by this equation. Overall, MDRD provides more reliable estimations of renal function than the Cockcroft-Gault (C-G) formula, but both lack precision. MDRD is not superior to C-G for drug dosing. Being adjusted to 1,73 m2, MDRD eGFR has to be back adjusted to the patient's body surface area for drug dosing. Besides, C-G has the advantage of a greater simplicity and a longer use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: An inverse relationship between blood pressure (BP) and cognitive function has been found in adults, but limited data are available in adolescents and young adults. We examined the prospective relation between BP and cognitive function in adolescence. METHODS: We examined the association between BP measured at the ages of 12-15 years in school surveys and cognitive endpoints measured in the Seychelles Child Development Study at ages 17 (n = 407) and 19 (n = 429) years, respectively. We evaluated multiple domains of cognition based on subtests of the Cambridge Neurological Test Automated Battery (CANTAB), the Woodcock Johnson Test of Scholastic Achievement (WJTA), the Finger Tapping test (FT) and the Kaufman Brief Intelligence Test (K-BIT). We used age, sex and height-specific z-scores of SBP, DBP and mean arterial pressure (MAP). RESULTS: Six out of the 21 cognitive endpoints tested were associated with BP. However, none of these associations were found to hold for both males and females or for different subtests within the same neurodevelopmental domain or for both SBP and DBP. Most of these associations disappeared when analyses were adjusted for selected potential confounding factors such as socio-economic status, birth weight, gestational age, BMI, alcohol consumption, blood glucose, and total n-3 and n-6 polyunsaturated fats. CONCLUSIONS: Our findings do not support a consistent association between BP and subsequent performance on tests assessing various cognitive domains in adolescents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through analysis of mice with spatially and temporally restricted inactivation of Lpin1, we characterized its cell autonomous function in both white (WAT) and brown (BAT) adipocyte development and maintenance. We observed that the lipin 1 inactivation in adipocytes of aP2(Cre/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice resulted in lipodystrophy and the presence of adipocytes with multilocular lipid droplets. We further showed that time-specific loss of lipin 1 in mature adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice led to their replacement by newly formed Lpin1-positive adipocytes, thus establishing a role for lipin 1 in mature adipocyte maintenance. Importantly, we observed that the presence of newly formed Lpin1-positive adipocytes in aP2(Cre-ERT2/+)/Lp(fEx2)(-)(3/fEx2)(-)(3) mice protected these animals against WAT inflammation and hepatic steatosis induced by a high-fat diet. Loss of lipin 1 also affected BAT development and function, as revealed by histological changes, defects in the expression of peroxisome proliferator-activated receptor alpha (PPARα), PGC-1α, and UCP1, and functionally by altered cold sensitivity. Finally, our data indicate that phosphatidic acid, which accumulates in WAT of animals lacking lipin 1 function, specifically inhibits differentiation of preadipocytes. Together, these observations firmly demonstrate a cell autonomous role of lipin 1 in WAT and BAT biology and indicate its potential as a therapeutical target for the treatment of obesity.