118 resultados para Ventricular Dysfunction, Left


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we investigated the effect of the xanthine oxidase (XO) inhibitor, allopurinol (ALP), on cardiac dysfunction, oxidative-nitrosative stress, apoptosis, poly(ADP-ribose) polymerase (PARP) activity and fibrosis associated with diabetic cardiomyopathy in mice. Diabetes was induced in C57/BL6 mice by injection of streptozotocin. Control and diabetic animals were treated with ALP or placebo. Left ventricular systolic and diastolic functions were measured by pressure-volume system 10 weeks after established diabetes. Myocardial XO, p22(phox), p40(phox), p47(phox), gp91(phox), iNOS, eNOS mRNA and/or protein levels, ROS and nitrotyrosine (NT) formation, caspase3/7 and PARP activity, chromatin fragmentation and various markers of fibrosis (collagen-1, TGF-beta, CTGF, fibronectin) were measured using molecular biology and biochemistry methods or immunohistochemistry. Diabetes was characterized by increased myocardial, liver and serum XO activity (but not expression), increased myocardial ROS generation, p22(phox), p40(phox), p47(phox), p91(phox) mRNA expression, iNOS (but not eNOS) expression, NT generation, caspase 3/7 and PARP activity/expression, chromatin fragmentation and fibrosis (enhanced accumulation of collagen, TGF-beta, CTGF and fibronectin), and declined systolic and diastolic myocardial performance. ALP attenuated the diabetes-induced increased myocardial, liver and serum XO activity, myocardial ROS, NT generation, iNOS expression, apoptosis, PARP activity and fibrosis, which were accompanied by improved systolic (measured by the evaluation of both load-dependent and independent indices of myocardial contractility) and diastolic performance of the hearts of treated diabetic animals. Thus, XO inhibition with ALP improves type 1 diabetes-induced cardiac dysfunction by decreasing oxidative/nitrosative stress and fibrosis, which may have important clinical implications for the treatment and prevention of diabetic cardiomyopathy and vascular dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 54-year-old patient who had an isolated small polar thalamic infarct and acute global amnesia with slight frontal type dysfunction but without other neurological dysfunction was studied. Memory improved partially within 8 months. At all stages the impairment was more severe for verbal than non-verbal memory. Autobiographic recollections and newly acquired information tended to be disorganised with respect to temporal order. Procedural memory was unaffected. Both emotional involvement and pleasure in reading were lost. On MRI, the infarct was limited to the left anterior thalamic nuclei and the adjacent mamillothalamic tract. The regional cerebral metabolic rate of glucose (measured with PET) was decreased on the left in the thalamus, amygdala, and posterior cingulate cortex 2 weeks after the infarct, and in the thalamus and posterior cingulate cortex 9 months later. These findings stress the specific role of the left anterior thalamic region in memory and confirm that longlasting amnesia from a thalamic lesion can occur without significant structural damage to the dorsomedial nucleus. Furthermore, they suggest that the anterior thalamic nuclei and possibly their connections with the posterior cingulate cortex play a role in emotional involvement linked to ipsilateral hemispheric functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perinatal adverse events such as limitation of nutrients or oxygen supply are associated with the occurrence of diseases in adulthood, like cardiovascular diseases and diabetes. We investigated the long-term effects of perinatal hypoxia on the lung circulation, with particular attention to the nitric oxide (NO)/cGMP pathway. Mice were placed under hypoxia in utero 5 days before delivery and for 5 days after birth. Pups were then bred in normoxia until adulthood. Adults born in hypoxia displayed an altered regulation of pulmonary vascular tone with higher right ventricular pressure in normoxia and increased sensitivity to acute hypoxia compared with controls. Perinatal hypoxia dramatically decreased endothelium-dependent relaxation induced by ACh in adult pulmonary arteries (PAs) but did not influence NO-mediated endothelium-independent relaxation. The M(3) muscarinic receptor was implicated in the relaxing action of ACh and M(1) muscarinic receptor (M(1)AChR) in its vasoconstrictive effects. Pirenzepine or telenzepine, two preferential inhibitors of M(1)AChR, abolished the adverse effects of perinatal hypoxia on ACh-induced relaxation. M(1)AChR mRNA expression was increased in lungs and PAs of mice born in hypoxia. The phosphodiesterase 1 (PDE1) inhibitor vinpocetine also reversed the decrease in ACh-induced relaxation following perinatal hypoxia, suggesting that M(1)AChR-mediated alteration of ACh-induced relaxation is due to the activation of calcium-dependent PDE1. Therefore, perinatal hypoxia leads to an altered pulmonary circulation in adulthood with vascular dysfunction characterized by impaired endothelium-dependent relaxation and M(1)AChR plays a predominant role. This raises the possibility that muscarinic receptors could be key determinants in pulmonary vascular diseases in relation to "perinatal imprinting."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Mammalian target of rapamycin (mTOR), a central regulator of cell growth, is found in two structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC)1 and mTORC2. The specific roles of each of these branches of mTOR signaling have not been dissected in the adult heart. In the present study, we aimed to bring new insights into the function of cardiac mTORC1-mediated signaling in physiological as well as pathological situations.Methods: We generated mice homozygous for loxP-flanked raptor and positive for the tamoxifen-inducible Cre recombinase (MerCreMer) under control of the α- myosin heavy chain promoter. The raptor gene encodes an essential component of mTORC1. Gene ablation was induced at the age of 10-12 weeks, and two weeks later the raptor cardiac-knockout (raptor-cKO) mice started voluntary cagewheel exercise or were subjected to transverse aortic constriction (TAC) to induce pressure overload.Results: In sedentary raptor-cKO mice, ejection fractions gradually decreased, resulting in significantly reduced values at 38 days (P < 0.001). Raptor-cKO mice started to die during the fifth week after the last tamoxifen injection. At that time, the mortality rate was 36% in sedentary (n = 11) and 64% in exercising (n = 14) mice. TAC-induced pressure overload resulted in severe cardiac dysfunction already at earlier timepoints. Thus, at 7-9 days after surgery, ejection fraction and fractional shortening values were 22.3% vs 43.5% and 10.2% vs 21.5% in raptor-cKO vs wild-type mice, respectively. This was accompanied by significant reductions of ventricular wall and septal thickness as well as an increase in left ventricular internal diameter. Moreover, ventricular weight to tibial length ratios were increased in wild-type, but not in the raptor-cKO TAC mice. Together, this shows that raptor-cKO mice rapidly developed dilated cardiomyopathy without going through a phase of adaptive hypertrophy. Expression of ANP and β-MHC was induced in all raptor-cKO mice irrespective of the cardiac load conditions. Consistent with reduced mTORC1 activity, phosphorylation of ribosomal S6 kinase and 4E-BP1 was blunted, indicating reduced protein synthesis. Moreover, expression of multiple genes involved in the regulation of energy metabolism was altered, and followed by a shift from fatty acid to glucose oxidation.Conclusion: Our study suggests that mTORC1 coordinates protein and energy metabolic pathways in the heart. Moreover, we demonstrate that raptor is essential for the cardiac adaptation to increased workload and importantly, also for normal physiological cardiac function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has not been well established whether the mechanisms participating in pH regulation in the anoxic-reoxygenated developing myocardium resemble those operating in the adult. We have specially examined the importance of Na+/H+ exchange (NHE) and HCO3-dependent transports in cardiac activity after changes in extracellular pH (pHo). Spontaneously contracting hearts isolated from 4-day-old chick embryos were submitted to single or repeated anoxia (1 min) followed by reoxygenation (10 min). The chronotropic, dromotropic and inotropic responses of the hearts were determined in standard HCO3- buffer at pHo 7.4 and at pHo 6.5 (hypercapnic acidosis). In distinct experiments, acidotic anoxia preceded reoxygenation at pHo 7.4. NHE was blocked with amiloride derivative HMA (1 micro mol/l) and HCO3-dependent transports were inactivated by replacement of HCO3 or blockade with stilbene derivative DIDS (100 micro mol/l). Anoxia caused transient tachycardia, depressed mechanical function and induced contracture. Reoxygenation temporarily provoked cardiac arrest, atrio-ventricular (AV) block, arrhythmias and depression of contractility. Addition of DIDS or substitution of HCO3 at pHo 7.4 had the same effects as acidosis per se, i.e. shortened contractile activity and increased incidence of arrhythmias during anoxia, prolonged cardioplegia and provoked arrhythmias at reoxygenation. Under anoxia at pHo 6.5/reoxygenation at pHo 7.4, cardioplegia, AV block and arrhythmias were all markedly prolonged. Interestingly, in the latter protocol, DIDS suppressed AV block and arrhythmias during reoxygenation, whereas HMA had no effect. Thus, intracellular pH regulation in the anoxic-reoxygenated embryonic heart appears to depend predominantly on HCO3 availability and transport. Furthermore, pharmacological inhibition of anion transport can protect against reoxygenation-induced dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Existing VADs are single-ventricle pumps needing anticoagulation. We developed a bi ventricular external assist device that reproduces the physiological heart muscle movement completely avoiding anticoagulants. Methods: The device has a carbon fibre skeleton fitting a 30-40 kg patient's heart, to which a Nitinol based artificial muscle is connected. The artificial muscle wraps both ventricles. The strength of the Nitinol fibres is amplified by a pivot articulation in contact with the ventricle wall. The fibres are electrically driven and a dedicated control unit has been developed. We assessed hemodynamic performances of this device using a previously described dedicated bench test. Volume ejected and pressure gradient has been measured with afterload ranging from 25 to 50mmHg. Results: With anafterload of 50mmHg the system has an ejection fraction (EF) of 10% on the right side and 8% on the left side. The system is able to generate a systolic ejection of 5,5 ml on the right side and 4,4 ml on the left side. With anafterload of 25mmHg the results are reduced of about 20%. The activation frequency is 80/minute resulting in a total volume displacement of 440 ml/minute on the right side and 352 ml/minute on the left side. Conclusions: The artificial muscle follows Starling's law as the ejected volume increases when afterload increases. These preliminary studies confirmed the possibility of improving the EF of a failing heart using artificial muscle for external cardiac compression. This device could be helpful in weaning CPB and/or for short-term cardio-circulatory support in paediatric population with cardiac failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pulmonary fat embolism (PFE) is a common complication of blunt force traumas with bone fractures. Severe forms cause impedance to right ventricular (RV) ejection, with eventual right heart ischaemia and failure. In a prospective study, we have investigated 220 consecutive autopsy cases (73 females, 147 males, mean age 52.1 years, min 14 years, max 91 years). PFE was detected in 52 cases that were divided into three groups according to the degree of PFE (1-3). A fourth group of cases of violent death without PFE was used for comparison. In each case, histology (H&E, Masson) and immunohistochemistry (fibronectin and C5b-9) were performed on six cardiac samples (anterior, lateral and posterior wall of both ventricles). The degree of cardiac damage was registered in each sample and the mean degree of damage was calculated in each case at the RV and left ventricle (LV). Moreover, a parameter ∆ that is the difference between the mean damage at the RV and the LV was calculated in each case. The results were compared within each group and between the groups. In the present study, we could not detect prevalent RV damage in cases of high degree PFE as we did in our previous investigation. In the group PFE3 the difference of the degree of damage between the RV and LV was higher than the one observed in the groups PFE0-2 with the antibody anti-fibronectin. Prevalent right ventricular stress in cases of severe PFE may explain this observation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myocardial ischaemia-reperfusion (MIR) triggers a sterile inflammatory response important for myocardial healing, but which may also contribute to adverse ventricular remodelling. Such inflammation is initiated by molecular danger signals released by damaged myocardium, which induce innate immune responses by activating toll-like receptors (TLRs). Detrimental roles have been recently reported for TLR2, TLR3 and TLR4. The role of other TLRs is unknown. We therefore evaluated the role of TLR5, expressed at high level in the heart, in the development of myocardial damage and inflammation acutely triggered by MIR. TLR5-/- and wild-type (WT) mice were exposed to MIR (30 min ischaemia, 2 h reperfusion). We measured infarct size, markers of cardiac oxidative stress, myocardial phosphorylation state of mitogen-activated protein (MAP) kinases and AKT, expression levels of chemokines and cytokines in the heart and plasma, as well as cardiac function by echography and conductance volumetry. TLR5-deficient mice had normal cardiac morphology and function under physiological conditions. After MIR, the absence of TLR5 promoted an increase in infarct size and myocardial oxidative stress. Lack of TLR5 fostered p38 phosphorylation, reduced AKT phosphorylation and markedly increased the expression of inflammatory cytokines, whereas it precipitated acute LV (left ventricle) dysfunction. Therefore, contrary to the detrimental roles of TLR2, TLR3 and TLR4 in the infarcted heart, TLR5 is important to limit myocardial damage, inflammation and functional compromise after MIR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The mechanism behind early graft failure after right ventricular outflow tract (RVOT) reconstruction is not fully understood. Our aim was to establish a three-dimensional computational fluid dynamics (CFD) model of RVOT to investigate the hemodynamic conditions that may trigger the development of intimal hyperplasia and arteriosclerosis. METHODS: Pressure, flow, and diameter at the RVOT, pulmonary artery (PA), bifurcation of the PA, and left and right PAs were measured in 10 normal pigs with a mean weight of 24.8 ± 0.78 kg. Data obtained from the experimental scenario were used for CFD simulation of pressure, flow, and shear stress profile from the RVOT to the left and right PAs. RESULTS: Using experimental data, a CFD model was obtained for 2.0 and 2.5-L/min pulsatile inflow profiles. In both velocity profiles, time and space averaged in the low-shear stress profile range from 0-6.0 Pa at the pulmonary trunk, its bifurcation, and at the openings of both PAs. These low-shear stress areas were accompanied to high-pressure regions 14.0-20.0 mm Hg (1866.2-2666 Pa). Flow analysis revealed a turbulent flow at the PA bifurcation and ostia of both PAs. CONCLUSIONS: Identified local low-shear stress, high pressure, and turbulent flow correspond to a well-defined trigger pattern for the development of intimal hyperplasia and arteriosclerosis. As such, this real-time three-dimensional CFD model may in the future serve as a tool for the planning of RVOT reconstruction, its analysis, and prediction of outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Repair of the right ventricular outflow tract (RVOT) in paediatric cardiac surgery remains challenging due to the high reoperation rate. Intimal hyperplasia and consequent arteriosclerosis is one of the most important limitation factors for graft durability. Since local shear stress and pressure are predictive elements for intimal hyperplasia and wall degeneration, we sought to determine in an oversized 12-mm RVOT model, with computed fluid dynamics simulation, the local haemodynamical factors that may explain intimal hyperplasia. This was done with the aim of identifying the optimal degree of oversizing for a 12-mm native RVOT. METHODS: Twenty domestic pigs, with a weight of 24.6 ± 0.89 kg and a native RVOT diameter of 12 ± 1.7 mm, had valve conduits of 12, 16, 18 and 20 mm implanted. Pressure and flow were measured at 75, 100 and 125% of normal flow at RVOT at the pulmonary artery, pulmonary artery bifurcation and at the left and right pulmonary arteries. Three-dimensional computed fluid dynamics (CFD) simulation in all four geometries in all flow modalities was performed. Local shear stress and pressure conditions were investigated. RESULTS: Corresponding to 75, 100 and 125% of steady-state flow, three inlet velocity profiles were obtained, 0.2, 0.29 and 0.36 m/s, respectively. At inflow velocity profiles, low shear stress areas, ranged from 0 to 2 Pa, combined with high-pressure areas ranging from 11.5 to 12.1 mmHg that were found at distal anastomosis, at bifurcation and at the ostia of the left and right pulmonary arteries in all geometries. CONCLUSIONS: In all three oversized geometries, the local reparation of shear stress and pressure in the 16-mm model showed a similar local profile as in the native 12 mm RVOT. According to these findings, we suggest oversizing the natural 12-mm RVOT by not more than 4 mm. The elements responsible for wall degeneration and intimal hyperplasia remain very similar to the conditions present in native RVOT.