229 resultados para VISUAL-EVOKED POTENTIALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary sensory cortex discriminates incoming sensory information and generates multiple processing streams toward other cortical areas. However, the underlying cellular mechanisms remain unknown. Here, by making whole-cell recordings in primary somatosensory barrel cortex (S1) of behaving mice, we show that S1 neurons projecting to primary motor cortex (M1) and those projecting to secondary somatosensory cortex (S2) have distinct intrinsic membrane properties and exhibit markedly different membrane potential dynamics during behavior. Passive tactile stimulation evoked faster and larger postsynaptic potentials (PSPs) in M1-projecting neurons, rapidly driving phasic action potential firing, well-suited for stimulus detection. Repetitive active touch evoked strongly depressing PSPs and only transient firing in M1-projecting neurons. In contrast, PSP summation allowed S2-projecting neurons to robustly signal sensory information accumulated during repetitive touch, useful for encoding object features. Thus, target-specific transformation of sensory-evoked synaptic potentials by S1 projection neurons generates functionally distinct output signals for sensorimotor coordination and sensory perception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine whether the relative afferent pupillary defect (RAPD) remains constant over time in normal subjects. METHODS: Seventeen normal subjects were tested with infrared pupillography and automated perimetry in four sessions over 3 years. The changes in RAPD and visual field asymmetry between testing sessions were compared. RESULTS: The range of RAPD was 0.0 to 0.3 log unit, and the difference in the mean deviation between the eyes on automated static perimetry was 0 to 3 dB. Eight subjects repeatedly had an RAPD in the same eye. There was no correlation between the RAPD and the visual field asymmetry at the same visit. Changes in the magnitude of the RAPD between any two sessions were typically small (median, 0.08 log unit; 25th percentile, 0.04 log unit; 75th percentile, 0.15 log unit). CONCLUSIONS: Some normal subjects may show a persistent but small RAPD in the absence of detectable pathologic disease. Therefore, an isolated RAPD in the range of 0.3 log unit that is not associated with any other significant historical or clinical finding should probably be considered benign.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rats were treated postnatally (PND 5-16) with BSO (l-buthionine-(S,R)-sulfoximine) in an animal model of schizophrenia based on transient glutathione deficit. The BSO treated rats were impaired in patrolling a maze or a homing table when adult, yet demonstrated preserved escape learning, place discrimination and reversal in a water maze task [37]. In the present work, BSO rats' performance in the water maze was assessed in conditions controlling for the available visual cues. First, in a completely curtained environment with two salient controlled cues, BSO rats showed little accuracy compared to control rats. Secondly, pre-trained BSO rats were impaired in reaching the familiar spatial position when curtains partially occluded different portions of the room environment in successive sessions. The apparently preserved place learning in a classical water maze task thus appears to require the stability and the richness of visual landmarks from the surrounding environment. In other words, the accuracy of BSO rats in place and reversal learning is impaired in a minimal cue condition or when the visual panorama changes between trials. However, if the panorama remains rich and stable between trials, BSO rats are equally efficient in reaching a familiar position or in learning a new one. This suggests that the BSO accurate performance in the water maze does not satisfy all the criteria for a cognitive map based navigation on the integration of polymodal cues. It supports the general hypothesis of a binding deficit in BSO rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The study tests the hypothesis that intramodal visual binding is disturbed in schizophrenia and should be detectable in all illness stages as a stable trait marker. METHOD: Three groups of patients (rehospitalized chronic schizophrenic, first admitted schizophrenic and schizotypal patients believed to be suffering from a pre-schizophrenic prodrome) and a group of normal control subjects were tested on three tasks targeting visual 'binding' abilities (Muller-Lyer's illusion and two figure detection tasks) in addition to control parameters such as reaction time, visual selective attention, Raven's test and two conventional cortical tasks of spatial working memory (SWM) and a global local test. RESULTS: Chronic patients had a decreased performance on the binding tests. Unexpectedly, the prodromal group exhibited an enhanced Gestalt extraction on these tests compared both to schizophrenic patients and to healthy subjects. Furthermore, chronic schizophrenia was associated with a poor performance on cortical tests of SWM, global local and on Raven. This association appears to be mediated by or linked to the chronicity of the illness. CONCLUSION: The study confirms a variety of neurocognitive deficits in schizophrenia which, however, in this sample seem to be linked to chronicity of illness. However, certain aspects of visual processing concerned with Gestalt extraction deserve attention as potential vulnerability- or prodrome- indicators. The initial hypothesis of the study is rejected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection and discrimination of visuospatial input involve at least extracting, selecting and encoding relevant information and decision-making processes allowing selecting a response. These two operations are altered, respectively, by attentional mechanisms that change discrimination capacities, and by beliefs concerning the likelihood of uncertain events. Information processing is tuned by the attentional level that acts like a filter on perception, while decision-making processes are weighed by subjective probability of risk. In addition, it has been shown that anxiety could affect the detection of unexpected events through the modification of the level of arousal. Consequently, purpose of this study concerns whether and how decision-making and brain dynamics are affected by anxiety. To investigate these questions, the performance of women with either a high (12) or a low (12) STAI-T (State-Trait Anxiety Inventory, Spielberger, 1983) was examined in a decision-making visuospatial task where subjects have to recognize a target visual pattern from non-target patterns. The target pattern was a schematic image of furniture arranged in such a way as to give the impression of a living room. Non-target patterns were created by either the compression or the dilatation of the distances between objects. Target and non-target patterns were always presented in the same configuration. Preliminary behavioral results show no group difference in reaction time. In addition, visuo-spatial abilities were analyzed trough the signal detection theory for quantifying perceptual decisions in the presence of uncertainty (Green and Swets, 1966). This theory treats detection of a stimulus as a decision-making process determined by the nature of the stimulus and cognitive factors. Astonishingly, no difference in d' (corresponding to the distance between means of the distributions) and c (corresponds to the likelihood ratio) indexes was observed. Comparison of Event-related potentials (ERP) reveals that brain dynamics differ according to anxiety. It shows differences in component latencies, particularly a delay in anxious subjects over posterior electrode sites. However, these differences are compensated during later components by shorter latencies in anxious subjects compared to non-anxious one. These inverted effects seem indicate that the absence of difference in reaction time rely on a compensation of attentional level that tunes cortical activation in anxious subjects, but they have to hammer away to maintain performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: The international EEsAI study group is currently developing the first activity index specific for Eosinophilic Esophagitis (EoE). None of the existing dysphagia questionnaires takes into account the consistency of the ingested food that considerably impacts the symptom presentation. Goal: To develop an EoE-specific questionnaire assessing dysphagia associated with different food consistencies. Methods: Based on patient chart reviews, an expert panel (EEsAI study group) identified internationally standardized food prototypes typically associated with EoE-related dysphagia. Food consistencies were correlated with EoE-related dysphagia, also considering potential food avoidance. This Visual Dysphagia Questionnaire (VDQ) was then tested, as a pilot, in 10 EoE patients. Results: The following 9 food consistency prototypes were identified: water, soft foods (pudding, jelly), grits, toast bread, French fries, dry rice, ground meat, raw fibrous foods (eg. apple, carrot), solid meat. Dysphagia was ranked on a 5-point Likert scale (0=no difficulties, 5=very severe difficulties, food will not pass). Severity of dysphagia in the 10 EoE patients was related to the eosinophil load and presence of esophageal strictures. Conclusions: The VDQ will be the first EoE-specific tool for assessing dysphagia related to internationally defined food consistencies. It performed well in a pilot study and will now be further evaluated in a cohort study including 100 adult and 100 pediatric EoE patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional imaging with intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is demonstrated. Images were acquired at 3 Tesla using a standard Stejskal-Tanner diffusion-weighted echo-planar imaging sequence with multiple b-values. Cerebro-spinal fluid signal, which is highly incoherent, was suppressed with an inversion recovery preparation pulse. IVIM microvascular perfusion parameters were calculated according to a two-compartment (vascular and non-vascular) diffusion model. The results obtained in 8 healthy human volunteers during visual stimulation are presented. The IVIM blood flow related parameter fD* increased 170% during stimulation in the visual cortex, and 70% in the underlying white matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual backward masking is a reliable and widely used tool in schizophrenia research. Whereas many studies have shown masking deficits in adult patients, there are only very few studies with adolescents with psychosis-and with controversial results. Masking deficits of adolescents are of primary interest because they are not caused by long-term suffering from the disease and severe medication. We investigated 15 adolescents with psychosis and 19 age-matched controls in the shine-through backward masking paradigm for which strong performance deficits were shown previously in adult schizophrenic patients and their relatives. Adolescents with psychosis were strongly impaired in the shine-through effect compared to controls. This result adds further evidence that backward masking is an endophenotype of schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the coherence of electroencephalographic (EEG) signals recorded symmetrically from the two hemispheres, while subjects (n = 9) were viewing visual stimuli. Considering the many common features of the callosal connectivity in mammals, we expected that, as in our animal studies, interhemispheric coherence (ICoh) would increase only with bilateral iso-oriented gratings located close to the vertical meridian of the visual field, or extending across it. Indeed, a single grating that extended across the vertical meridian significantly increased the EEG ICoh in normal adult subjects. These ICoh responses were obtained from occipital and parietal derivations and were restricted to the gamma frequency band. They were detectable with different EEG references and were robust across and within subjects. Other unilateral and bilateral stimuli, including identical gratings that were effective in anesthetized animals, did not affect ICoh in humans. This fact suggests the existence of regulatory influences, possibly of a top-down kind, on the pattern of callosal activation in conscious human subjects. In addition to establishing the validity of EEG coherence analysis for assaying cortico-cortical connectivity, this study extends to the human brain the finding that visual stimuli cause interhemispheric synchronization, particularly in frequencies of the gamma band. It also indicates that the synchronization is carried out by cortico-cortical connection and suggests similarities in the organization of visual callosal connections in animals and in man.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functional architecture of the occipital cortex is being studied with increasing detail. Functional and structural MR based imaging are altering views about the organisation of the human visual system. Recent advances have ranged from comparative studies with non-human primates to predictive scanning. The latter multivariate technique describes with sub-voxel resolution patterns of activity that are characteristic of specific visual experiences. One can deduce what a subject experienced visually from the pattern of cortical activity recorded. The challenge for the future is to understand visual functions in terms of cerebral computations at a mesoscopic level of description and to relate this information to electrophysiology. The principal medical application of this new knowledge has focused to a large extent on plasticity and the capacity for functional reorganisation. Crossmodality visual-sensory interactions and cross-correlations between visual and other cerebral areas in the resting state are areas of considerable current interest. The lecture will review findings over the last two decades and reflect on possible roles for imaging studies in the future.