257 resultados para Tcr
Resumo:
A novel procedure is presented describing the induction of antigen-specific cytolytic T lymphocytes (CTL) in vivo, that uses as immunogen syngeneic Concanavalin A stimulated spleen cells expressing H-2Kd (Kd) molecules photocrosslinked with a photoreactive peptide derivative. The Kd restricted Plasmodium berghei circumsporozoite (PbCS) peptide 253-260 (YIPSAEKI) was conjugated with photoreactive iodo-4-azidosalicylic acid (IASA) at the NH2-terminus and with 4-azidobenzoic acid (ABA) at the TCR contact residue Lys259 to make IASA-YIPSAEK(ABA)I. Selective photoactivation of the IASA group allowed specific photoaffinity labeling of cell-associated Kd molecules. Optimal peptide derivative binding to Kd molecules of concanavalin A stimulated spleen cells was obtained upon 4-6 h incubation at 26 degrees C in the presence of human beta 2 microglobulin. Photocrosslinking prevented the rapid dissociation of cell-associated Kd-peptide derivative complexes at 37 degrees C. The photoaffinity labeled cells were injected i.p. into syngeneic recipients. After 10 days, the peritoneal exudate lymphocytes were harvested and in vitro stimulated with peptide derivative pulsed P815 mastocytoma cells. The resulting bulk cultures displayed high cytolytic activity that was specific for IASA-YIPSAEK(ABA)I and YIPSAEK(ABA)I. In contrast, peritoneal exudate lymphocytes from mice inoculated with concanavalin A blasts that were pulsed, but not photocrosslinked, with IASA-YIPSAEK(ABA)I expressed only marginal levels of IASA-YIPSAEK(ABA)I-specific cytolytic activity. This immunization strategy, using neither adjuvants nor potentially hazardous transfected/transformed cells, is safe and should be universally applicable.
Resumo:
BACKGROUND: Long-term therapy with natalizumab increases the risk of progressive multifocal leukoencephalopathy (PML). OBJECTIVES: We present a patient study through therapy, the diagnosis of PML (after 29 infusions), plasma exchange (PE) and development of immune reconstitution inflammatory syndrome (IRIS). METHODS: Routine diagnostics, magnetic resonance imaging (MRI), immunological status (flow cytometry, T-cell migration assays and T-cell repertoire analysis), and brain biopsy with immunohistological analysis. RESULTS: CD49d decreased after 12 months of treatment. At PML diagnosis, CD49d expression and migratory capacity of T cells was low and peripheral T-cell receptor (TCR) complexity showed severe perturbations. The distribution of peripheral monocytes changed from CCR5+ to CCR7+. After PE some changes reverted: CD49d increased and overshot earliest levels, migratory capacities of T cells recovered and peripheral TCR complexity increased. With no clinical, routine laboratory or cerebrospinal fluid (CSF) changes, MRI 2 months after PE demonstrated progressive lesion development. Brain histopathology confirmed the presence of infiltrates indicative of IRIS without clinical signs, immunologically accompanied by CCR7/CCR5 recovery of peripheral monocytes. CONCLUSION: Natalizumab-associated immunological changes accompanying PML were reversible after PE; IRIS can occur very late, remain asymptomatic and be elusive to CSF analysis. Our study may provide insights into the changes under treatment with natalizumab associated with JC virus control.
Resumo:
BTLA (B- and T-lymphocyte attenuator) is a prominent co-receptor that is structurally and functionally related to CTLA-4 and PD-1. In T cells, BTLA inhibits TCR-mediated activation. In B cells, roles and functions of BTLA are still poorly understood and have never been studied in the context of B cells activated by CpG via TLR9. In this study, we evaluated the expression of BTLA depending on activation and differentiation of human B cell subsets in peripheral blood and lymph nodes. Stimulation with CpG upregulated BTLA, but not its ligand: herpes virus entry mediator (HVEM), on B cells in vitro and sustained its expression in vivo in melanoma patients after vaccination. Upon ligation with HVEM, BTLA inhibited CpG-mediated B cell functions (proliferation, cytokine production, and upregulation of co-stimulatory molecules), which was reversed by blocking BTLA/HVEM interactions. Interestingly, chemokine secretion (IL-8 and MIP1β) was not affected by BTLA/HVEM ligation, suggesting that BTLA-mediated inhibition is selective for some but not all B cell functions. We conclude that BTLA is an important immune checkpoint for B cells, as similarly known for T cells.
Resumo:
RESUME La mémoire immunologique est essentielle durant la vie et permet aux lymphocytes de répondre plus rapidement et efficacement lors d'une deuxième rencontre avec un antigène connu. Les facteurs contrôlant l'homéostasie des cellules T CD8 mémoires in vivo ne sont pas encore bien définis. Cependant, la prolifération homéostatique de ces cellules dans un hôte déplété en cellules hématopoietiques nécessite l'intéraction du TCR avec les molecules du MHC de class I du soi. De plus, le rôle de cytokines, telles que 1'IL-15 et l'IL-7, est essentiel dans ce mécanisme, aussi bien que dans la maintenance des cellules T CD8 mémoires. Puisque la protéine c-Myc - impliquée dans des mécanismes tells que la division, la prolifération, l'apoptose et la differentiation - a été définie comme étant impliquée dans la réponse à différentes cytokines, nous nous sommes intéressés à l'analyse de l'homéostasie des lymphocytes T CD8 mémoires dans des souris déficientes en c-Myc (c_rnycΔORF/+), qui expriment un niveau réduit de cette protéine. Bien que le développement des cellules T dans le thymus soit normal dans les souris c_rnycΔORF/+, nous avons observé une réduction de 2 à 3 fois dans la population des cellules T CD8 de phenotype mémoire (CD44+) dans les organes lymphoïdes de la périphérie de ces souris. Cette différence ne correspond pas à une réduction de prolifération ou d'expression de protéines de survie telles que Bel-2. Cependant, la prolifération homéostatique de cellules T CD8 c_rnycΔORF/+, mais pas T CD4 c_rnycΔORF/+, est reduite de manière dramatique lorsqu'elles sont transférées dans un hôte irradié. De plus, le transfert adoptif de lymphocytes T dans des souris irradiées déficientes en l'IL-15 nous a permis de montrer que la prolifération homéostatique dépendante de l'IL-15 des cellules T CD8 nécessite l'expression de c-Myc. De plus, contrairement aux cellules T CD8 CD44+ de type sauvage, nous avons observé que l'expansion induite par l'IL-15 des cellules T CD8 CD44+ c_rnycΔORF/+ est altérée aussi bien in vivo (en réponse à une injection de polyI:C) et in vitro. Par conséquent, nos résultats identifient c-Myc comme une nouvelle protéine régulatrice de la signalisation par l'IL-15 impliquée dans l'homéostasie des cellules T CD8 CD44+. SUMMARY Immunological memory is essential throughout life and allows memory lymphocytes to respond faster and more efficiently upon re-encounter of a known antigen. Factors controlling homeostasis of memory CD8 T cells under steady-state conditions in vivo are currently not well defined. However, the homeostatic proliferation of memory CD8 T cells in lymphopenic hosts requires the interaction of the TCR with self MHC class I molecules. In addition, cytokines, such as IL-15 and to a lesser extent IL-7, are essential for both homeostatic proliferation and maintenance of memory CD8 T cells. Since c-Myc, a proto-oncogene involved in cell division, proliferation, apoptosis and differentiation, has been widely implicated in responsiveness to cytokines, we were interested in analyzing homeostasis of memory CD8 T cells in c-myc hypomorph (c_rnycΔORF/+) mice, which express reduced levels of c-Myc. Although T cell development in the thymus was normal in c_rnycΔORF/+ mice, we found a selective 2- to 3-fold reduction in the memory-phenotype CD44high CD8 T cell population in the periphery. Reduced numbers of CD44high CD8 T cells did not correlate with decreased steady-state turnover rate or low expression of survival factors such as Bcl- 2. However, homeostatic proliferation of c_rnycΔORF/+ CD8 T cells, but not c_rnycΔORF/+ CD4 T cells, was dramatically reduced upon transfer into sublethally irradiated wild-type recipients. In addition, upon transfer of c_rnycΔORF/+ and c-myc WT cells into IL-15-/- mice, we observed that IL-15-induced homeostatic proliferation of CD8 T cells requires c-Myc. Moreover, in contrast to c-myc WT CD44high CD8 T cells, IL-15-induced expansion of c_rnycΔORF/+ CD44high CD8 T cells was strongly impaired both in vivo (in response to polyI:C injection) and in vitro. Collectively, our data identify c-Myc as a novel downstream regulator of IL-15 signaling involved in homeostasis of memory CD8 T cells.
Resumo:
Invariant natural killer T (iNKT) cells as we know them today are a unique subset of mature T cells co-expressing a semi-invariant Valpha14/Vbeta8 TCR and surface markers characteristic of NK cells. The semi-invariant TCR on iNKT cells recognizes glycolipids bound to monomorphic CD1d molecules, leading to rapid cytokine production. The purpose of this historical perspective is to describe how a series of seemingly unrelated findings in the late 1980s and early 1990s crystallized in the discovery of iNKT cells. The story is told from a personal viewpoint, with a particular effort to place both breakthroughs and misinterpretations in the context of their era.
Resumo:
Synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) have recently emerged as a useful tool for the analysis of T cell recognition. This includes identification of potentially cross-reactive sequences of self or pathogen origin that could be relevant for the understanding of TCR repertoire selection and maintenance, as well as of the cross-reactive potential of Ag-specific immune responses. In this study, we have analyzed the recognition of sequences retrieved by using a biometric analysis of the data generated by screening a PS-SCL with a tumor-reactive CTL clone specific for an immunodominant peptide from the melanocyte differentiation and tumor-associated Ag Melan-A. We found that 39% of the retrieved peptides were recognized by the CTL clone used for PS-SCL screening. The proportion of peptides recognized was higher among those with both high predicted affinity for the HLA-A2 molecule and high predicted stimulatory score. Interestingly, up to 94% of the retrieved peptides were cross-recognized by other Melan-A-specific CTL. Cross-recognition was at least partially focused, as some peptides were cross-recognized by the majority of CTL. Importantly, stimulation of PBMC from melanoma patients with the most frequently recognized peptides elicited the expansion of heterogeneous CD8(+) T cell populations, one fraction of which cross-recognized Melan-A. Together, these results underline the high predictive value of PS-SCL for the identification of sequences cross-recognized by Ag-specific T cells.
Resumo:
The extraordinary sensitivity of CD8+ T cells to recognize antigen impinges to a large extent on the coreceptor CD8. While several studies have shown that the CD8beta chain endows CD8 with efficient coreceptor function, the molecular basis for this is enigmatic. Here we report that cell-associated CD8alphabeta, but not CD8alphaalpha or soluble CD8alphabeta, substantially increases the avidity of T cell receptor (TCR)-ligand binding. To elucidate how the cytoplasmic and transmembrane portions of CD8beta endow CD8 with efficient coreceptor function, we examined T1.4 T cell hybridomas transfected with various CD8beta constructs. T1.4 hybridomas recognize a photoreactive Plasmodium berghei circumsporozoite (PbCS) peptide derivative (PbCS (4-azidobezoic acid [ABA])) in the context of H-2K(d), and permit assessment of TCR-ligand binding by TCR photoaffinity labeling. We find that the cytoplasmic portion of CD8beta, mainly due to its palmitoylation, mediates partitioning of CD8 in lipid rafts, where it efficiently associates with p56(lck). In addition, the cytoplasmic portion of CD8beta mediates constitutive association of CD8 with TCR/CD3. The resulting TCR-CD8 adducts exhibit high affinity for major histocompatibility complex (MHC)-peptide. Importantly, because CD8alphabeta partitions in rafts, its interaction with TCR/CD3 promotes raft association of TCR/CD3. Engagement of these TCR/CD3-CD8/lck adducts by multimeric MHC-peptide induces activation of p56(lck) in rafts, which in turn phosphorylates CD3 and initiates T cell activation.
Resumo:
The liver of C57BL/6 mice contains a major subset of CD4+8- and CD4-8- T cell receptor (TCR)-alpha/beta+ cells expressing the polymorphic natural killer NK1.1 surface marker. Liver NK1.1+TCR-alpha/beta+ (NK1+ T) cells require interaction with beta2-microglobulin-associated, major histocompatibility complex I-like molecules on hematopoietic cells for their development and have a TCR repertoire that is highly skewed to Vbeta8.2, Vbeta7, and Vbeta2. We show here that congenic C57BL/6.Vbeta(a) mice, which lack Vbeta8- expressing T cells owing to a genomic deletion at the Vbeta locus, maintain normal levels of liver NK1+ T cells owing to a dramatic increase in the proportion of cells expressing Vbeta7 and Vbeta2 (but not other Vbetas). Moreover, in C57BL/6 congenic TCR-V Vbeta3 and -Vbeta8.1 transgenic mice (which in theory should not express other Vbeta, owing to allelic exclusion at the TCR-beta locus), endogenous TCR-Vbeta8.2, Vbeta7, and Vbeta2 (but not other Vbetas) are frequently expressed on liver NK1+T cells but absent on lymph node T cells. Finally, when endogenous V beta expression is prevented in TCR-Vbeta3 and Vbeta8.1 transgenic mice (by introduction of a null allele at the C beta locus), the development of liver NK1+T cells is totally abrogated. Collectively, our data indicate that liver NK1+T cells have a stringent requirement for expression of TCR-Vbeta8.2, Vbeta7, or Vbeta2 for their development.
Resumo:
T cell factor-1 (Tcf-1) is a transcription factor that binds to a sequence motif present in several T cell-specific enhancer elements. In Tcf-1-deficient (Tcf-1-/-) mice, thymocyte development is partially blocked at the transition from the CD4-8+ immature single-positive stage to the CD4+8+ double-positive stage, resulting in a marked decrease of mature peripheral T cells in lymph node and spleen. We report here that the development of most intestinal TCR gamma delta+ cells and liver CD4+ NK1.1+TCR alpha beta+ (NK1+T) cells, which are believed to be of extrathymic origin, is selectively impaired in Tcf-1-/- mice. In contrast, thymic and thymus-derived (splenic) TCR gamma delta+ cells are present in normal numbers in Tcf-1-/- mice, as are other T cell subsets in intestine and liver. Collectively, our data suggest that Tcf-1 is differentially required for the development of some extrathymic T cell subsets, including intestinal TCR gamma delta+ cells and liver CD4+ NK1+T cells.
Resumo:
CD8αβ plays crucial roles in the thymic selection, differentiation, and activation of some, but not all, CD8(+) T cells, whereas CD8αα does not. To investigate these roles, we produced mice that expressed transgene P14 T-cell receptor β (TCRβ) chain and CD8β or did not (WT and KO mice, respectively). The primary CD8(+) T-cell response to acute lymphocytic choriomeningitis virus (LCMV) infection was predominantly D(b)/GP33 specific and CD8 independent in KO mice and was mostly CD8 dependent in WT mice. Cytotoxic T lymphocytes (CTL) from KO mice failed to mobilize intracellular Ca(2+) and to kill via perforin/granzyme. Their strong Fas/FasL-mediated cytotoxicity and IFN-γ response were signaled via a Ca(2+)-independent, PI3K-dependent pathway. This was also true for 15-20% of CD8-independent CTL found in WT mice. Conversely, the perforin/granzyme-mediated killing and IFN-γ response of CD8-dependent CTL were signaled via a Ca(2+), p56(lck), and nuclear factor of activated T cells-dependent pathway. Deep sequencing of millions of TCRα chain transcripts revealed that the TCR repertoires of preimmune CD8(+) T cells were highly diverse, but those of LCMV D(b)/GP33-specific CTL, especially from KO mice, were narrow. The immune repertoires exhibited biased use of Vα segments that encoded different complementary-determining region 1α (CDR1α) and CDR2α sequences. We suggest that TCR from WT CD8-independent T cells may engage MHC-peptide complexes in a manner unfavorable for efficient CD8 engagement and Ca(2+) signaling but permissive for Ca(2+)-independent, PI3K-dependent signaling. This duality of the CD8 compartment may provide organisms with broader protective immunity.
Resumo:
In transplant rejection, graft versus host or autoimmune diseases T cells are mediating the pathophysiological processes. Compared to unspecific pharmacological immune suppression specific inhibition of those T cells, that are involved in the disease, would be an alternative and attractive approach. T cells are activated after their T cell receptor (TCR) recognizes an antigenic peptide displayed by the Major Histocompatibility Complex (MHC). Molecules that interact with MHC-peptide-complexes in a specific fashion should block T cells with identical specificity. Using the model of the SSX2 (103-111)/HLA-A*0201 complex we investigated a panel of MHC-peptide-specific Fab antibodies for their capacity blocking specific T cell clones. Like TCRs all Fab antibodies reacted with the MHC complex only when the SSX2 (103-111) peptide was displayed. By introducing single amino acid mutations in the HLA-A*0201 heavy chain we identified the K66 residue as the most critical binding similar to that of TCRs. However, some Fab antibodies did not inhibit the reactivity of a specific T cell clone against peptide pulsed, artificial targets, nor cells displaying the peptide after endogenous processing. Measurements of binding kinetics revealed that only those Fab antibodies were capable of blocking T cells that interacted with an affinity in the nanomolar range. Fab antibodies binding like TCRs with affinities on the lower micromolar range did not inhibit T cell reactivity. These results indicate that molecules that block T cells by competitive binding with the TCR must have the same specificity but higher affinity for the MHC-peptide-complex than the TCR.
Resumo:
The aim of T cell vaccines is the expansion of antigen-specific T cells able to confer immune protection against pathogens or tumors. Although increase in absolute cell numbers, effector functions and TCR repertoire of vaccine-induced T cells are often evaluated, their reactivity for the cognate antigen versus their cross-reactive potential is rarely considered. In fact, little information is available regarding the influence of vaccines on T cell fine specificity of antigen recognition despite the impact that this feature may have in protective immunity. To shed light on the cross-reactive potential of vaccine-induced cells, we analyzed the reactivity of CD8(+) T cells following vaccination of HLA-A2(+) melanoma patients with Melan-A peptide, incomplete Freund's adjuvant and CpG-oligodeoxynucleotide adjuvant, which was shown to induce strong expansion of Melan-A-reactive CD8(+) T cells in vivo. A collection of predicted Melan-A cross-reactive peptides, identified from a combinatorial peptide library, was used to probe functional antigen recognition of PBMC ex vivo and Melan-A-reactive CD8(+) T cell clones. While Melan-A-reactive CD8(+) T cells prior to vaccination are usually constituted of widely cross-reactive naive cells, we show that peptide vaccination resulted in expansion of memory T cells displaying a reactivity predominantly restricted to the antigen of interest. Importantly, these cells are tumor-reactive.
Resumo:
T-cell development depends upon interactions between thymocytes and thymic epithelial cells (TECs). The engagement of delta-like 4 (DL4) on TECs by Notch1 expressed by blood-borne BM-derived precursors is essential for T-cell commitment in the adult thymus. In contrast to the adult, the earliest T-cell progenitors in the embryo originate in the fetal liver and migrate to the nonvascularized fetal thymus via chemokine signals. Within the fetal thymus, some T-cell precursors undergo programmed TCRγ and TCRδ rearrangement and selection, giving rise to unique γδ T cells. Despite these fundamental differences between fetal and adult T-cell lymphopoiesis, we show here that DL4-mediated Notch signaling is essential for the development of both αβ and γδ T-cell lineages in the embryo. Deletion of the DL4 gene in fetal TECs results in an early block in αβ T-cell development and a dramatic reduction of all γδ T-cell subsets in the fetal thymus. In contrast to the adult, no dramatic deviation of T-cell precursors to alternative fates was observed in the fetal thymus in the absence of Notch signaling. Taken together, our data reveal a common requirement for DL4-mediated Notch signaling in fetal and adult thymopoiesis.
Resumo:
During T cell development in the thymus, T cell receptor (TCR) alpha, beta, gamma, and delta genes are rearranged and expressed. TCR rearrangement strictly depends upon the coordinate activity of two recombinase activating genes, Rag-1 and Rag-2. In this study we have followed the expression of these genes at different stages of intrathymic development. The results indicate that there are two periods of high Rag-1 and Rag-2 mRNA expression. The first wave peaks early at the CD25+CD4-CD8-CD3- stage of development and coincides with the initial appearance of transcripts derived from fully rearranged TCR beta, gamma, and delta genes, whereas the second wave occurs later at the CD4+CD8+ stage coincident with full-length TCR alpha mRNA expression. Active downregulation of Rag-1 and Rag-2 mRNA expression appears to occur in vivo between the two peaks of recombinase activity. This phenomenon can be mimicked in vitro in response to artificial stimuli such as phorbol myristate acetate and calcium ionophore. Collectively our data suggest that recombinase expression is actively regulated during early thymus development independently of cell surface expression of a mature heterodimeric TCR protein complex.
Resumo:
P-glycoprotein (P-gly) is the transmembrane efflux pump responsible for multidrug resistance in tumor cells. The activity of P-gly in mature peripheral lymphocytes is lineage specific, with CD8+ T cells and natural killer (NK) cells expressing high levels as compared to CD4+ T cells and B cells. We have now investigated P-gly activity in immature and mature subsets of mouse thymocytes. Our data indicate that P-gly activity is undetectable in immature CD4-8- and CD4+8+ thymocyte subsets. Among mature thymocytes, P-gly activity is absent in the CD4+ subset but present in the more mature (HSAlow) fraction of CD8+ cells. Furthermore, while thymic CD4-8- T cell receptor (TCR) gamma delta cells have little P-gly activity, a minor subset of CD4-8- or CD4+ TCR alpha beta + thymocytes bearing the NK1.1 surface marker expresses high levels of P-gly activity. Collectively, our results indicate that P-gly activity arises late during thymus development and is expressed in a lineage-specific fashion.