503 resultados para Stereotactic ablative radiotherapy
Resumo:
Radiation therapy undeniably enhances local control and thus improves overall survival in cancer patients. However, some long-term cancer survivors (less than 10%) develop severe late radio-induced toxicities altering their quality of life. Therefore, there is a need to identify patients who are sensitive to those toxicities and who could benefit from adapted care. In this review, we address all available techniques aiming to detect patients' hyper-radiosensitivity and present the scientific rationales these techniques are based on.
Resumo:
PURPOSE: To assess the feasibility and activity of radio-chemotherapy with mitomycin C (MMC) and cisplatin (CDDP) in locally advanced squamous cell anal carcinoma with reference to radiotherapy (RT) combined with MMC and fluorouracil (5-FU). PATIENTS AND METHODS: Patients with measurable disease >4 cmN0 or N+ received RT (36Gy+2 week gap+23.4Gy) with either MMC/CDDP or MMC/5-FU (MMC 10mg/m(2) d1 of each sequence; 5-FU 200mg/m(2)/day c.i.v. daily; CDDP 25mg/m(2) weekly). Forty patients/arm were needed to exclude a RECIST objective response rate (ORR), 8 weeks after treatment, of <75% (Fleming 1, alpha=10%, beta=10%). RESULTS: The ORR was 79.5% (31/39) (lower bound confidence interval [CI]: 68.8%) with MMC/5-FU versus 91.9% (34/ 37) (lower bound CI: 82.8%) with MMC/CDDP. In the MMC/5-FU group, two patients (5.1%) discontinued treatment due to toxicity versus 11 (29.7%) in the MMC/CDDP group. Nine grade 3 haematological events occurred with MMC/CDDP versus none with 5-FU/MMC. The rate of other toxicities did not differ. There was no toxic death. Thirty-one patients in the MMC/5-FU arm (79.5%) and 18 in the MMC/CDDP arm (48.6%) were fully compliant with the protocol treatment (p=0.005). CONCLUSIONS: Radio-chemotherapy with MMC/CDDP seems promising as only MMC/CDDP demonstrated enough activity (RECIST ORR >75%) to be tested further in phase III trials; MMC/5-FU did not. MMC/CDDP also had an overall acceptable toxicity profile.
Resumo:
INTRODUCTION: This trial randomly assessed short-term adjuvant hormonal therapy added to radiotherapy (RT) for intermediate- and high-risk (UICC 1997 cT2a or cT1b-c with high PSA or Gleason score) localised prostate cancer. We report acute toxicity (CTCAE v2) assessed weekly during RT in relation to radiation parameters. PATIENTS AND METHODS: Centres selected the RT dose (70, 74 or 78Gy) and RT technique. Statistical significance is at 0.05. RESULTS: Of 791 patients, 652 received 3D-CRT (70Gy: 195, 74Gy: 376, 78Gy: 81) and 139 received IMRT (74Gy: 28, 78Gy: 111). During RT, grade 3 gastrointestinal (GI) and genitourinary (GU) toxicities were reported by 7 (0.8%) and 50 (6.3%) patients, respectively. No grade 4 was reported. The risk of grade 2 GI toxicity increased significantly with increasing D50%-rectum (p=0.004) and that of grade 2 GU toxicity correlated only to Dmax-bladder (p=0.051). 3D-RT technique, increasing total dose and V95% >400 cc increased D50% and Dmax. One month after RT, only 14 patients (1.8%) reported grade 3 toxicity. AST did not seem to influence the risk of GU or GI acute toxicity. CONCLUSION: RT up to 78Gy was well tolerated. Dmax-bladder and D50%-rectum influenced the risk of grade 2 GU toxicity and GI toxicity, respectively. Both were lower with IMRT but remained high for an irradiated RT volume>400 cc for 3D-RT and for a dose of 78Gy. Hormonal treatment did not influence acute toxicity.
Resumo:
BACKGROUND: To compare morphological gross tumor volumes (GTVs), defined as pre- and postoperative gadolinium enhancement on T1-weighted magnetic resonance imaging to biological tumor volumes (BTVs), defined by the uptake of (18)F fluoroethyltyrosine (FET) for the radiotherapy planning of high-grade glioma, using a dedicated positron emission tomography (PET)-CT scanner equipped with three triangulation lasers for patient positioning. METHODS: Nineteen patients with malignant glioma were included into a prospective protocol using FET PET-CT for radiotherapy planning. To be eligible, patients had to present with residual disease after surgery. Planning was performed using the clinical target volume (CTV = GTV union or logical sum BTV) and planning target volume (PTV = CTV + 20 mm). First, the interrater reliability for BTV delineation was assessed among three observers. Second, the BTV and GTV were quantified and compared. Finally, the geometrical relationships between GTV and BTV were assessed. RESULTS: Interrater agreement for BTV delineation was excellent (intraclass correlation coefficient 0.9). Although, BTVs and GTVs were not significantly different (p = 0.9), CTVs (mean 57.8 +/- 30.4 cm(3)) were significantly larger than BTVs (mean 42.1 +/- 24.4 cm(3); p < 0.01) or GTVs (mean 38.7 +/- 25.7 cm(3); p < 0.01). In 13 (68%) and 6 (32%) of 19 patients, FET uptake extended >or= 10 and 20 mm from the margin of the gadolinium enhancement. CONCLUSION: Using FET, the interrater reliability had excellent agreement for BTV delineation. With FET PET-CT planning, the size and geometrical location of GTVs and BTVs differed in a majority of patients.
Resumo:
PURPOSE: Patients with locally advanced rectal carcinoma are at risk for both local recurrence and distant metastases. We demonstrated the efficacy of preoperative hyperfractionated accelerated radiotherapy (HART). In this Phase I trial, we aimed at introducing chemotherapy early in the treatment course with both intrinsic antitumor activity and a radiosensitizer effect. METHODS AND MATERIALS: Twenty-eight patients (19 males; median age 63, range 28-75) with advanced rectal carcinoma (cT3: 24; cT4: 4; cN+: 12; M1: 5) were enrolled, including 8 patients treated at the maximally tolerated dose. Escalating doses of CPT-11 (30-105 mg/m(2)/week) were given on Days 1, 8, and 15, and concomitant HART (41.6 Gy, 1.6 Gy bid x 13 days) started on Day 8. Surgery was to be performed within 1 week after the end of radiochemotherapy. RESULTS: Twenty-six patients completed all preoperative radiochemotherapy as scheduled; all patients underwent surgery. Dose-limiting toxicity was diarrhea Grade 3 occurring at dose level 6 (105 mg/m(2)). Hematotoxicity was mild, with only 1 patient experiencing Grade 3 neutropenia. Postoperative complications (30 days) occurred in 7 patients, with an anastomotic leak rate of 22%. CONCLUSIONS: The recommended Phase II dose of CPT-11 in this setting is 90 mg/m(2)/week. Further Phase II exploration at this dose is warranted.
Resumo:
BACKGROUND: Most patients with glioblastoma are older than 60 years, but treatment guidelines are based on trials in patients aged only up to 70 years. We did a randomised trial to assess the optimum palliative treatment in patients aged 60 years and older with glioblastoma. METHODS: Patients with newly diagnosed glioblastoma were recruited from Austria, Denmark, France, Norway, Sweden, Switzerland, and Turkey. They were assigned by a computer-generated randomisation schedule, stratified by centre, to receive temozolomide (200 mg/m(2) on days 1-5 of every 28 days for up to six cycles), hypofractionated radiotherapy (34·0 Gy administered in 3·4 Gy fractions over 2 weeks), or standard radiotherapy (60·0 Gy administered in 2·0 Gy fractions over 6 weeks). Patients and study staff were aware of treatment assignment. The primary endpoint was overall survival. Analyses were done by intention to treat. This trial is registered, number ISRCTN81470623. FINDINGS: 342 patients were enrolled, of whom 291 were randomised across three treatment groups (temozolomide n=93, hypofractionated radiotherapy n=98, standard radiotherapy n=100) and 51 of whom were randomised across only two groups (temozolomide n=26, hypofractionated radiotherapy n=25). In the three-group randomisation, in comparison with standard radiotherapy, median overall survival was significantly longer with temozolomide (8·3 months [95% CI 7·1-9·5; n=93] vs 6·0 months [95% CI 5·1-6·8; n=100], hazard ratio [HR] 0·70; 95% CI 0·52-0·93, p=0·01), but not with hypofractionated radiotherapy (7·5 months [6·5-8·6; n=98], HR 0·85 [0·64-1·12], p=0·24). For all patients who received temozolomide or hypofractionated radiotherapy (n=242) overall survival was similar (8·4 months [7·3-9·4; n=119] vs 7·4 months [6·4-8·4; n=123]; HR 0·82, 95% CI 0·63-1·06; p=0·12). For age older than 70 years, survival was better with temozolomide and with hypofractionated radiotherapy than with standard radiotherapy (HR for temozolomide vs standard radiotherapy 0·35 [0·21-0·56], p<0·0001; HR for hypofractionated vs standard radiotherapy 0·59 [95% CI 0·37-0·93], p=0·02). Patients treated with temozolomide who had tumour MGMT promoter methylation had significantly longer survival than those without MGMT promoter methylation (9·7 months [95% CI 8·0-11·4] vs 6·8 months [5·9-7·7]; HR 0·56 [95% CI 0·34-0·93], p=0·02), but no difference was noted between those with methylated and unmethylated MGMT promoter treated with radiotherapy (HR 0·97 [95% CI 0·69-1·38]; p=0·81). As expected, the most common grade 3-4 adverse events in the temozolomide group were neutropenia (n=12) and thrombocytopenia (n=18). Grade 3-5 infections in all randomisation groups were reported in 18 patients. Two patients had fatal infections (one in the temozolomide group and one in the standard radiotherapy group) and one in the temozolomide group with grade 2 thrombocytopenia died from complications after surgery for a gastrointestinal bleed. INTERPRETATION: Standard radiotherapy was associated with poor outcomes, especially in patients older than 70 years. Both temozolomide and hypofractionated radiotherapy should be considered as standard treatment options in elderly patients with glioblastoma. MGMT promoter methylation status might be a useful predictive marker for benefit from temozolomide. FUNDING: Merck, Lion's Cancer Research Foundation, University of Umeå, and the Swedish Cancer Society.
Resumo:
Background We previously reported the results of a phase II study for patients with newly diagnosed primary central nervous system lymphoma treated with autologous peripheral blood stem-cell transplantation (aPBSCT) and response-adapted whole-brain radiotherapy (WBRT). Now, we update the initial results. Patients and methods From 1999 to 2004, 23 patients received high-dose methotrexate. In case of at least partial remission, high-dose busulfan/thiotepa (HD-BuTT) followed by aPBSCT was carried out. Patients refractory to induction or without complete remission after HD-BuTT received WBRT. Eight patients still alive in 2011 were contacted and Mini-Mental State Examination (MMSE) and the European Organisation for Research and Treatment of Cancer quality-of-life questionnaire (QLQ)-C30 were carried out. Results Of eight patients still alive, median follow-up is 116.9 months. Only one of nine irradiated patients is still alive with a severe neurologic deficit. In seven of eight patients treated with HD-BuTT, health condition and quality of life are excellent. MMSE and QLQ-C30 showed remarkably good results in patients who did not receive WBRT. All of them have a Karnofsky score of 90%-100%. Conclusions Follow-up shows an overall survival of 35%. In six of seven patients where WBRT could be avoided, no long-term neurotoxicity has been observed and all patients have an excellent quality of life.
Resumo:
Hormone receptors are expressed in more than 75% of breast cancer. Therefore, two prescription modalities of endocrine therapy could be proposed: either sequential or concomitant to breast cancer irradiation. If combined to radiotherapy, is endocrine therapy a radiosensitizer? Does endocrine therapy enhance the risk factor of radio-induced toxicity? Here, we will distinguish the interaction of ionizing radiation combined with therapies targeting oestrogen receptor (REα) from the interaction of ionizing radiation with oestrogen. This review aims at making clear all these items.
Resumo:
PURPOSE: Evidence has accumulated in recent years suggestive of a genetic basis for a susceptibility to the development of radiation injury after cancer radiotherapy. The purpose of this study was to assess whether patients with severe radiation-induced sequelae (RIS; i.e., National Cancer Institute/CTCv3.0 grade, > or =3) display both a low capacity of radiation-induced CD8 lymphocyte apoptosis (RILA) in vitro and possess certain single nucleotide polymorphisms (SNP) located in candidate genes associated with the response of cells to radiation. EXPERIMENTAL DESIGN: DNA was isolated from blood samples obtained from patients (n = 399) included in the Swiss prospective study evaluating the predictive effect of in vitro RILA and RIS. SNPs in the ATM, SOD2, XRCC1, XRCC3, TGFB1, and RAD21 genes were screened in patients who experienced severe RIS (group A, n = 16) and control subjects who did not manifest any evidence of RIS (group B, n = 18). RESULTS: Overall, 13 and 21 patients were found to possess a total of <4 and > or =4 SNPs in the candidate genes. The median (range) RILA in group A was 9.4% (5.3-16.5) and 94% (95% confidence interval, 70-100) of the patients (15 of 16) had > or =4 SNPs. In group B, median (range) RILA was 25.7% (20.2-43.2) and 33% (95% confidence interval, 13-59) of patients (6 of 18) had > or =4 SNPs (P < 0.001). CONCLUSIONS: The results of this study suggest that patients with severe RIS possess 4 or more SNPs in candidate genes and low radiation-induced CD8 lymphocyte apoptosis in vitro.
Resumo:
PURPOSE/OBJECTIVE(S): To analyze the long-term outcome of treatment with concomitant cisplatin and hyperfractionated radiotherapy in locally advanced head and neck cancer compared with hyperfractionated radiotherapy alone. MATERIALS/METHODS: From July 1994 to July 2000 a total of 224 patients with squamous cell carcinoma of the head and neck were randomized to either hyperfractionated radiotherapy (median dose 74.4 Gy; 1.2 Gy twice daily) or the same radiotherapy combined with two cycles of concomitant cisplatin (20mg/m2 for 5 consecutive days of weeks 1 and 5). The primary endpoint was time to any treatment failure; secondary endpoints were locoregional failure, metastatic failure, overall survival, and late toxicity assessed according to RTOG criteria. The trial was registered at the National Institutes of Health (www.clinicaltrials.gov; identifier number: NCT00002654). RESULTS: Median follow-up was 9.5 years (range, 0.1 - 15.4 years). Median time to any treatment failure was not significantly different between treatment arms (p = 0.19). Locoregional control (p\0.05), distant metastasis-free survival (p = 0.02) and cancer specific survival (p = 0.03) were significantly improved in the combined treatment arm, with no difference in late toxicity between treatment arms. However, overall survival was not significantly different (p = 0.19). CONCLUSIONS: After long-term follow-up combined treatment with cisplatin and hyperfractionated, radiotherapy maintained an improved locoregional control, distant metastasis-free survival, and cancer specific survival as compared to hyperfractionated radiotherapy alone with no difference in late toxicity.
Resumo:
PURPOSE: The European Organisation for Research and Treatment of Cancer and National Cancer Institute of Canada trial on temozolomide (TMZ) and radiotherapy (RT) in glioblastoma (GBM) has demonstrated that the combination of TMZ and RT conferred a significant and meaningful survival advantage compared with RT alone. We evaluated in this trial whether the recursive partitioning analysis (RPA) retains its overall prognostic value and what the benefit of the combined modality is in each RPA class. PATIENTS AND METHODS: Five hundred seventy-three patients with newly diagnosed GBM were randomly assigned to standard postoperative RT or to the same RT with concomitant TMZ followed by adjuvant TMZ. The primary end point was overall survival. The European Organisation for Research and Treatment of Cancer RPA used accounts for age, WHO performance status, extent of surgery, and the Mini-Mental Status Examination. RESULTS: Overall survival was statistically different among RPA classes III, IV, and V, with median survival times of 17, 15, and 10 months, respectively, and 2-year survival rates of 32%, 19%, and 11%, respectively (P < .0001). Survival with combined TMZ/RT was higher in RPA class III, with 21 months median survival time and a 43% 2-year survival rate, versus 15 months and 20% for RT alone (P = .006). In RPA class IV, the survival advantage remained significant, with median survival times of 16 v 13 months, respectively, and 2-year survival rates of 28% v 11%, respectively (P = .0001). In RPA class V, however, the survival advantage of RT/TMZ was of borderline significance (P = .054). CONCLUSION: RPA retains its prognostic significance overall as well as in patients receiving RT with or without TMZ for newly diagnosed GBM, particularly in classes III and IV.
Resumo:
BACKGROUND: Letrozole radiosensitises breast cancer cells in vitro. In clinical settings, no data exist for the combination of letrozole and radiotherapy. We assessed concurrent and sequential radiotherapy and letrozole in the adjuvant setting. METHODS: This phase 2 randomised trial was undertaken in two centres in France and one in Switzerland between Jan 12, 2005, and Feb 21, 2007. 150 postmenopausal women with early-stage breast cancer were randomly assigned after conserving surgery to either concurrent radiotherapy and letrozole (n=75) or sequential radiotherapy and letrozole (n=75). Randomisation was open label with a minimisation technique, stratified by investigational centres, chemotherapy (yes vs no), radiation boost (yes vs no), and value of radiation-induced lymphocyte apoptosis (< or = 16% vs >16%). Whole breast was irradiated to a total dose of 50 Gy in 25 fractions over 5 weeks. In the case of supraclavicular and internal mammary node irradiation, the dose was 44-50 Gy. Letrozole was administered orally once daily at a dose of 2.5 mg for 5 years (beginning 3 weeks pre-radiotherapy in the concomitant group, and 3 weeks post-radiotherapy in the sequential group). The primary endpoint was the occurrence of acute (during and within 6 weeks of radiotherapy) and late (within 2 years) radiation-induced grade 2 or worse toxic effects of the skin. Analyses were by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00208273. FINDINGS: All patients were analysed apart from one in the concurrent group who withdrew consent before any treatment. During radiotherapy and within the first 12 weeks after radiotherapy, 31 patients in the concurrent group and 31 in the sequential group had any grade 2 or worse skin-related toxicity. The most common skin-related adverse event was dermatitis: four patients in the concurrent group and six in the sequential group had grade 3 acute skin dermatitis during radiotherapy. At a median follow-up of 26 months (range 3-40), two patients in each group had grade 2 or worse late effects (both radiation-induced subcutaneous fibrosis). INTERPRETATION: Letrozole can be safely delivered shortly after surgery and concomitantly with radiotherapy. Long-term follow-up is needed to investigate cardiac side-effects and cancer-specific outcomes. FUNDING: Novartis Oncology France.