154 resultados para Space-Vector Modulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retroviral vectors have many favorable properties for gene therapies, but their use remains limited by safety concerns and/or by relatively lower titers for some of the safer self-inactivating (SIN) derivatives. In this study, we evaluated whether increased production of SIN retroviral vectors can be achieved from the use of matrix attachment region (MAR) epigenetic regulators. Two MAR elements of human origin were found to increase and to stabilize the expression of the green fluorescent protein transgene in stably transfected HEK-293 packaging cells. Introduction of one of these MAR elements in retroviral vector-producing plasmids yielded higher expression of the viral vector RNA. Consistently, viral titers obtained from transient transfection of MAR-containing plasmids were increased up to sixfold as compared with the parental construct, when evaluated in different packaging cell systems and transfection conditions. Thus, use of MAR elements opens new perspectives for the efficient generation of gene therapy vectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A procedure is described that allows the simple identification and sorting of live human cells that transcribe actively the HIV virus, based on the detection of GFP fluorescence in cells. Using adenoviral vectors for gene transfer, an expression cassette including the HIV-1 LTR driving the reporter gene GFP was introduced into cells that expressed stably either the Tat transcriptional activator, or an inactive mutant of Tat. Both northern and fluorescence-activated cell sorting (FACS) analysis indicate that cells containing the functional Tat protein presented levels of GFP mRNA and GFP fluorescence several orders of magnitude higher than control cells. Correspondingly, cells infected with HIV-1 showed similar enhanced reporter gene activation. HIV-1-infected cells of the lymphocytic line Jurkat were easily identified by fluorescence-activated cell sorting (FACS) as they displayed a much higher green fluorescence after transduction with the reporter adenoviral vector. This procedure could also be applied on primary human cells as blood monocyte-derived macrophages exposed to the adenoviral LTR-GFP reporter presented a much higher fluorescence when infected with HIV-1 compared with HIV-uninfected cells. The vector described has the advantages of labelling cells independently of their proliferation status and that analysis can be carried on intact cells which can be isolated subsequently by fluorescence-activated cell sorting (FACS) for further culture. This work suggests that adenoviral vectors carrying a virus-specific transcriptional control element controlling the expressions of a fluorescent protein will be useful in the identification and isolation of cells transcribing actively the viral template, and to be of use for drug screening and susceptibility assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Sleep disordered breathing with central apnea or hypopnea frequently occurs at high altitude and is thought to be caused by a decrease in blood CO(2) level. The aim of this study was to assess the effects of added respiratory dead space on sleep disordered breathing.¦METHODS: Full polysomnographies were performed on 12 unacclimatized swiss mountaineers (11 males, 1 female, mean age 39±12 y.o.) in Leh, Ladakh (3500m). In random order, half of the night was spent with a 500ml increase in dead space through a custom designed full face mask and the other half without it.¦RESULTS: Baseline data revealed two clearly distinct groups: one with severe sleep disordered breathing (n=5, AHI>30) and the other with moderate to no disordered breathing (n=7, AHI<30). DS markedly improved breathing in the first group (baseline vs DS): apnea hypopnea index (AHI) 70.3±25.8 vs 29.4±6.9 (p=0.013), oxygen desaturation index (ODI): 72.9±24.1/h vs 42.5±14.4 (p=0.031), whereas it had no significant effect in the second group or in the total population. Respiratory events were almost exclusively central apnea or hypopnea. Microarousal index, sleep efficiency, and sleep architecture remained unchanged with DS. A minor increase in mean PtcCO(2) (n=3) was observed with DS.¦CONCLUSION: A 500ml increase in dead space through a fitted mask may improve nocturnal breathing in mountaineers with severe altitude-induced sleep disordered breathing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluvial deposits are a challenge for modelling flow in sub-surface reservoirs. Connectivity and continuity of permeable bodies have a major impact on fluid flow in porous media. Contemporary object-based and multipoint statistics methods face a problem of robust representation of connected structures. An alternative approach to model petrophysical properties is based on machine learning algorithm ? Support Vector Regression (SVR). Semi-supervised SVR is able to establish spatial connectivity taking into account the prior knowledge on natural similarities. SVR as a learning algorithm is robust to noise and captures dependencies from all available data. Semi-supervised SVR applied to a synthetic fluvial reservoir demonstrated robust results, which are well matched to the flow performance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmid DNA and adenovirus vectors currently used in cardiovascular gene therapy trials are limited by low efficiency and short-lived transgene expression, respectively. Recombinant adeno-associated virus (AAV) has recently emerged as an attractive vector for cardiovascular gene therapy. In the present study, we have compared AAV and adenovirus vectors with respect to gene transfer efficiency and the duration of transgene expression in mouse hearts and arteries in vivo. AAV vectors (titer: 5 x 10(8) transducing units (TU)/ml) and adenovirus vectors (1.2 x 10(10) TU/ml) expressing a green fluorescent protein (EGFP) gene were injected either intramyocardially (n=32) or intrapericardially (n=3) in CD-1 mice. Hearts were harvested at varying time intervals (3 days to 1 year) after gene delivery. After intramyocardial injection of 5 microl virus stock solution, cardiomyocyte transduction rates with AAV vectors were 4-fold lower than with adenovirus vectors (1.5% (range: 0.5-2.6%) vs. 6.2% (range: 2.7-13.7%); P<0.05), but similar to titer-matched adenovirus vectors (0.7%; range: 0.2-1.2%). AAV-mediated EGFP expression lasted for at least 1 year. AAV vectors instilled into the pericardial space transduced epicardial myocytes. Arterial gene transfer was studied in mouse carotids (n=26). Both vectors selectively transduced endothelial cells after luminal instillation. Transduction rates with AAV vectors were 8-fold lower than with adenovirus vectors (2.0% (range: 0-3.2%) vs. 16.2% (range: 8.5-20.2%); P<0.05). Prolonged EGFP expression was observed after AAV but not adenovirus-mediated gene transfer. In conclusion, AAV vectors deliver and express genes for extended periods of time in the myocardium and arterial endothelium in vivo. AAV vectors may be useful for gene therapy approaches to chronic cardiovascular diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. In this paper, we focus on the prediction of drug concentrations using Support Vector Machines (S VM) and the analysis of the influence of each feature to the prediction results. Our study shows that SVM-based approaches achieve similar prediction results compared with pharmacokinetic model. The two proposed example-based SVM methods demonstrate that the individual features help to increase the accuracy in the predictions of drug concentration with a reduced library of training data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) (alpha, beta/delta and gamma) are lipid sensors capable of adapting gene expression to integrate various lipid signals. As such, PPARs are also very important pharmaceutical targets, and specific synthetic ligands exist for the different isotypes and are either currently used or hold promises in the treatment of major metabolic disorders. In particular, compounds of the class of the thiazolinediones (TZDs) are PPARgamma agonists and potent insulin-sensitizers. The specific but still broad expression patterns of PPARgamma, as well as its implication in numerous pathways, constitutes also a disadvantage regarding drug administration, since this potentially increases the chance to generate side-effects through the activation of the receptor in tissues or cells not affected by the disease. Actually, numerous side effects associated with the administration of TZDs have been reported. Today, a new generation of PPARgamma modulators is being actively developed to activate the receptor more specifically, in a cell and time-dependent manner, in order to induce a specific subset of target genes only and modulate a restricted number of metabolic pathways. We will discuss here why and how the development of such selective PPARgamma modulators is possible, and summarize the results obtained with the published molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the presentation of human histocompatability leukocyte antigen-A*0201-associated tumor peptide antigen MAGE-3271-279 by melanoma cells. We show that specific cytotoxic T lymphocyte (CTL)-recognizing cells transfected with a minigene encoding the preprocessed fragment MAGE-3271-279 failed to recognize cells expressing the full length MAGE-3 protein. Digestion of synthetic peptides extended at the NH2 or COOH terminus of MAGE-3271-279 with purified human proteasome revealed that the generation of the COOH terminus of the antigenic peptide was impaired. Surprisingly, addition of lactacystin to purified proteasome, though partially inhibitory, resulted in the generation of the antigenic peptide. Furthermore, treatment of melanoma cells expressing the MAGE-3 protein with lactacystin resulted in efficient lysis by MAGE-3271-279-specific CTL. We therefore postulate that the generation of antigenic peptides by the proteasome in cells can be modulated by the selective inhibition of certain of its enzymaticactivities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Empirical testing of candidate vaccines has led to the successful development of a number of lifesaving vaccines. The advent of new tools to manipulate antigens and new methods and vectors for vaccine delivery has led to a veritable explosion of potential vaccine designs. As a result, selection of candidate vaccines suitable for large-scale efficacy testing has become more challenging. This is especially true for diseases such as dengue, HIV, and tuberculosis where there is no validated animal model or correlate of immune protection. Establishing guidelines for the selection of vaccine candidates for advanced testing has become a necessity. A number of factors could be considered in making these decisions, including, for example, safety in animal and human studies, immune profile, protection in animal studies, production processes with product quality and stability, availability of resources, and estimated cost of goods. The "immune space template" proposed here provides a standardized approach by which the quality, level, and durability of immune responses elicited in early human trials by a candidate vaccine can be described. The immune response profile will demonstrate if and how the candidate is unique relative to other candidates, especially those that have preceded it into efficacy testing and, thus, what new information concerning potential immune correlates could be learned from an efficacy trial. A thorough characterization of immune responses should also provide insight into a developer's rationale for the vaccine's proposed mechanism of action. HIV vaccine researchers plan to include this general approach in up-selecting candidates for the next large efficacy trial. This "immune space" approach may also be applicable to other vaccine development endeavors where correlates of vaccine-induced immune protection remain unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Inflammation has evolved as a mechanism to defend the body against invading microorganisms and to respond to injury. It requires the coordinated response of a large number of cell types from the whole organism in a time- and space-dependent fashion. This coordination involves several cell-cell communication mechanisms. Exchange of humoral mediators such as cytokines is a major one. Moreover, direct contact between cells happens and plays a primordial role, for example when macrophages present antigens to lymphocytes. Contact between endothelial cells and leucocytes occurs when the latter cross the blood vessel barrier and transmigrate to the inflammatory site. A particular way by which cells communicate with each other in the course of inflammation, which at this time starts to gain attention, is the intercellular communication mediated by gap junctions. Gap junctions are channels providing a direct pathway (i.e. without transit through the extracellular space) for the diffusion of small molecules between adjacent cells. This process is known as gap junctional intercellular communication (GJIC). The general aim of this thesis was to study a possible involvement of GJIC in the pathophysiology of inflammation. A first part of the work was dedicated to study the implication of GJIC in the modification of vascular endothelial function by inflammation. In a second part, we were interested in the possible role of GJIC in the transmigration of neutrophil polymorphonuclear leucocytes through the endothelium. The main positive finding of this work is that acute inflammation preferentially modulates the expression of connexin 40 (Cx40), a gap junction protein specifically expressed in vascular endothelium. The modulation could be towards overexpression (aortic endothelium of septic rats) or towards downregulation (acutely inflamed mouse lung). We put a lot of efforts in search of possible functions of these modulations, in two directions: a potential protective role of Cx40 increased expression against sepsis-induced endothelial dysfunction, and a facilitating role of Cx40 decreased expression in neutrophil transmigration. To pursue both directions, it seemed logical to study the impact of Cx40 deletion using knock-out mice. Concerning the potential protective role of Cx40 overexpression we encountered a roadblock as we observed, in the aorta, a Cx40 downregulation in wild type mouse whereas Cx40 was upregulated in the rat. Regarding the second direction and using an in vivo approach, we observed that pulmonary neutrophil transmigration was not affected by the genetic deletion of Cx40. In spite of their negative nature, these results are the very first ones regarding the potential implication of GJIC concerning leucocyte transmigration in vivo. Because this process involves such tight cell-cell physical contacts, the hypothesis for a role of GJIC remains attractive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ability to induce protein expression at will in a cell is a powerful strategy used by scientists to better understand the function of a protein of interest. Various inducible systems have been designed in eukaryotic cells to achieve this goal. Most of them rely on two distinct vectors, one encoding a protein that can regulate transcription by binding a compound X, and one hosting the cDNA encoding the protein of interest placed downstream of promoter sequences that can bind the protein regulated by compound X (e.g., tetracycline, ecdysone). The commercially available systems are not designed to allow cell- or tissue-specific regulated expression. Additionally, although these systems can be used to generate stable clones that can be induced to express a given protein, extensive screening is often required to eliminate the clones that display poor induction or high basal levels. In the present report, we aimed to design a pancreatic beta cell-specific tetracycline-inducible system. Since the classical two-vector based tetracycline-inducible system proved to be unsatisfactory in our hands, a single vector was eventually designed that allowed tight beta cell-specific tetracycline induction in unselected cell populations.