177 resultados para Scale density
Resumo:
The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by processbased modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws.We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25m resolution.
Resumo:
The diagnosis of muscular dystrophies or the assessment of the functional benefit of gene or cell therapies can be difficult, especially for poorly accessible muscles, and it often lacks a singlefiber resolution. In the present study, we evaluated whether muscle diseases can be diagnosed from small biopsies using atomic force microscopy (AFM). AFM was shown to provide a sensitive and quantitative description of the resistance of normal and dystrophic myofibers within live muscle tissues explanted from Duchenne mdx mice. The rescue of dystrophin expression by gene therapy approaches led to the functional recovery of treated dystrophic muscle fibers, as probed using AFM and by in situ wholemuscle strength measurements. Comparison of muscles treated with viral or non-viral vectors indicated that the efficacy of the gene transfer approaches could be distinguished with a single myofiber resolution. This indicated full correction of the resistance to deformation in nearly all of the muscle fibers treated with an adeno-associated viral vector that mediates exon-skipping on the dystrophin mRNA. Having shown that AFM can provide a quantitative assessment of the expression of muscle proteins and of the muscular function in animal models, we assessed myofiber resistance in the context of human muscular dystrophies and myopathies. Thus, various forms of human Becker syndrome can also be detected using AFM in blind studies of small frozen biopsies from human patients. Interestingly, it also allowed the detection of anomalies in a fraction of the muscle fibers from patients showing a muscle weakness that could not be attributed to a known molecular or genetic defect. Overall, we conclude that AFM may provide a useful method to complement current diagnosis tools of known and unknown muscular diseases, in research and in a clinical context.
Resumo:
When back-calculating fish length from scale measurements, the choice of the body-scale relationship is a fundamental step. Using data from the arctic charrSalvelinus alpinus (L.) of Lake Geneva (Switzerland) we show the need for a curvilinear model, on both statistical and biological grounds. From several 2-parameters models, the log-linear relationship appears to provide the best fit. A 3-parameters, Bertalanffy model did not improve the fit. We show moreover that using the proportional model would lead to important misinterpretations of the data.
Resumo:
1. As trees in a given cohort progress through ontogeny, many individuals die. This risk of mortality is unevenly distributed across species because of many processes such as habitat filtering, interspecific competition and negative density dependence. Here, we predict and test the patterns that such ecological processes should inscribe on both species and phylogenetic diversity as plants recruit from saplings to the canopy. 2. We compared species and phylogenetic diversity of sapling and tree communities at two sites in French Guiana. We surveyed 2084 adult trees in four 1-ha tree plots and 943 saplings in sixteen 16-m2 subplots nested within the tree plots. Species diversity was measured using Fisher's alpha (species richness) and Simpson's index (species evenness). Phylogenetic diversity was measured using Faith's phylogenetic diversity (phylogenetic richness) and Rao's quadratic entropy index (phylogenetic evenness). The phylogenetic diversity indices were inferred using four phylogenetic hypotheses: two based on rbcLa plastid DNA sequences obtained from the inventoried individuals with different branch lengths, a global phylogeny available from the Angiosperm Phylogeny Group, and a combination of both. 3. Taxonomic identification of the saplings was performed by combining morphological and DNA barcoding techniques using three plant DNA barcodes (psbA-trnH, rpoC1 and rbcLa). DNA barcoding enabled us to increase species assignment and to assign unidentified saplings to molecular operational taxonomic units. 4. Species richness was similar between saplings and trees, but in about half of our comparisons, species evenness was higher in trees than in saplings. This suggests that negative density dependence plays an important role during the sapling-to-tree transition. 5. Phylogenetic richness increased between saplings and trees in about half of the comparisons. Phylogenetic evenness increased significantly between saplings and trees in a few cases (4 out of 16) and only with the most resolved phylogeny. These results suggest that negative density dependence operates largely independently of the phylogenetic structure of communities. 6. Synthesis. By contrasting species richness and evenness across size classes, we suggest that negative density dependence drives shifts in composition during the sapling-to-tree transition. In addition, we found little evidence for a change in phylogenetic diversity across age classes, suggesting that the observed patterns are not phylogenetically constrained.
Resumo:
We studied for the first time the occurrence of multiple paternity, male reproductive success, and neonate survival in wild, low-density adder (Vipera berus) populations using 13 microsatellite loci. Paternity was assigned for 15 clutches, collected during 3 years. Our data demonstrated that multiple paternity can occur at a high level (69%) in natural populations of V. berus, even if the density of adults is low. The high proportion of multiple sired clutches was comparable to the proportion observed in captive populations. Male reproductive success significantly increased with body length, and only the largest males successfully sired entire clutches. Finally, no relationship was detected between the number of fathers per clutch and neonate survival. These results suggest that multiple matings could be beneficial in populations with high level of inbreeding or low male fecundity.
Resumo:
Population densities of marked common dormice Muscardinus avellanarius are generally based on nest box checks. As dormice also use natural cavities and leaf nests, we tried to answer the question "what proportion of the population cannot be monitored by nest boy checks", using parallel trapping sessions. We selected a forest of 1.7ha where a 5-year nest box survey revealed an annual mean of 3.4 ± 1.4 dormice per check. The trap design (permanent grid of 77 hanging platforms) was developed in June. During July and August the traps were set every second week (4 sessions of two nights = 8 nights) resulting in a total of 75 captures with mean of 9.4 dormice per night and the presence of 16 different individuals. The grid of 60 nest boxes was checked weekly (8 times) which allowed the recapture of 19 dormice with a mean of 2.4 dormice, per control day and the presence of 6 different individuals. Population density estimated by calendar of capture and the minimal number of dormice alive methods gave for nest-box checks a value of 2.4 animals/ha and the trap checks 6.6 animals/ha with the conclusion that 63% of the population were not being monitored by nest box checks.
Resumo:
SummaryLow-density lipoproteins (LDLs) have an important physiological role in organism transporting cholesterol and other fatty substances to target tissues. However, elevated LDL levels in the blood are associated with the formation of arterial plaques and consequently atherosclerosis. It is therefore important to characterize the intracellular pathways induced upon LDL stimulation as they might be involved in the pathological properties of these lipoproteins. It has been previously found that LDL stimulation of mouse embryonic fibroblasts activates p38 mitogen activated protein kinases (MAPKs). This leads to cell spreading and increase in the wound healing capabilities of the cells. These two responses might occur within atherosclerotic plaques.The aim of this project is to reveal the missing links between LDL particle and activation of p38 MAPK kinase. As previously shown in our lab activation of p38 MAPK kinase by the LDL particles occur independently of classical LDL receptor (LDLR). In this study we have shown that scavenger receptor type Β class I (SR-BI) is responsible for the signal transduction from the LDLs to the p38 MAPK. We have also shown that Mitogen activated kinase kinases (MKKs) that can directly activate ρ 38 MAPK in these conditions are MKK3 and MKK6 but not MKK4. We have also tested some of the intermediate components of the pathway like Ras and PI3 kinase but found that they do not play a role.The data obtained in this study showed a part of molecular mechanism responsible for p38 MAPK activation and subsequent wound healing and can contribute to our knowledge on function of the fibroblasts in the development of the atherosclerotic plaques.Diabetes Mellitus is a condition caused by disordered metabolism of blood glucose level. It is one of the most commonly spread disease in the western world, with the incidence reaching 8% of population in United States. Two most common types of diabetes are type 1 and 2 that differs slightly in the mechanism of the development. However in the basis of both types lies the cell death of pancreatic beta cells. The aim of this work is to improve beta cells survival in different pathophysiological settings. This could be extrapolated to the conditions in which Diabetes develops in humans. We decided to use RasGAP- derived fragment Ν with its strong antiapoptotic effect in beta cells. In our lab we have demonstrated that in the mild stress conditions RasGAP can be cleaved by caspases at the position 455 producing two fragments, fragment Ν and fragment C. Fragment Ν exerts
Resumo:
OBJECTIVE: To demonstrate the validity and reliability of volumetric quantitative computed tomography (vQCT) with multi-slice computed tomography (MSCT) and dual energy X-ray absorptiometry (DXA) for hip bone mineral density (BMD) measurements, and to compare the differences between the two techniques in discriminating postmenopausal women with osteoporosis-related vertebral fractures from those without. METHODS: Ninety subjects were enrolled and divided into three groups based on the BMD values of the lumbar spine and/or the femoral neck by DXA. Groups 1 and 2 consisted of postmenopausal women with BMD changes <-2SD, with and without radiographically confirmed vertebral fracture (n=11 and 33, respectively). Group 3 comprised normal controls with BMD changes > or =-1SD (n=46). Post-MSCT (GE, LightSpeed16) scan reconstructed images of the abdominal-pelvic region, 1.25 mm thick per slice, were processed by OsteoCAD software to calculate the following parameters: volumetric BMD values of trabecular bone (TRAB), cortical bone (CORT), and integral bone (INTGL) of the left femoral neck, femoral neck axis length (NAL), and minimum cross-section area (mCSA). DXA BMD measurements of the lumbar spine (AP-SPINE) and the left femoral neck (NECK) also were performed for each subject. RESULTS: The values of all seven parameters were significantly lower in subjects of Groups 1 and 2 than in normal postmenopausal women (P<0.05, respectively). Comparing Groups 1 and 2, 3D-TRAB and 3D-INTGL were significantly lower in postmenopausal women with vertebral fracture(s) [(109.8+/-9.61) and (243.3+/-33.0) mg/cm3, respectively] than in those without [(148.9+/-7.47) and (285.4+/-17.8) mg/cm(3), respectively] (P<0.05, respectively), but no significant differences were evident in AP-SPINE or NECK BMD. CONCLUSION: the femoral neck-derived volumetric BMD parameters using vQCT appeared better than the DXA-derived ones in discriminating osteoporotic postmenopausal women with vertebral fractures from those without. vQCT might be useful to evaluate the effect of osteoporotic vertebral fracture status on changes in bone mass in the femoral neck.
Resumo:
r/K theory classically predicts that offspring size should increase under density-dependent selection. However, this is questionable, being based on implicit rather than explicit assumption (the logistic model does not include offsring size as a parameter). From recent models of optimal offspring size (Sibly & Calow, 1983; Taylor & Williams, 1984) it can be shown that density should select for larger offspring if density-dependence in the per capita rate of increase is mainly due to a reduction of the juvenile growth rate or survivorship. In contrast, density should select for smaller offspring if such density-dependence is mainly due to a reduction of adult fecundity or survivorship. Therfore, the outcome of selection cannot be predicted without precise knowledge of the density-dependence of age-specific reproduction and mortality rates. To test the above models, genetically identical individuals of Simocephalus vetulus (Müller) were reared in a density gradient; density-dependence in the per capita rate of increase was shown to be mainly due to a reduction of the juvenile growth rate, thereby selecting for larger offspring; offspring size at birth appeared to be phenotypically plastic and to increase with density. Models were therefore qualitatively supported. However, a discrepancy occurred in quantitative predictions; offspring were produced larger than predicted. Field and laboratory studies are suggested to address this.
Resumo:
BACKGROUND AND OBJECTIVES: It is well established by a large number of randomized controlled trials that lowering blood pressure (BP) and low-density lipoprotein cholesterol (LDL-C) by drugs are powerful means to reduce stroke incidence, but the optimal BP and LDL-C levels to be achieved are largely uncertain. Concerning BP targets, two hypotheses are being confronted: first, the lower the BP, the better the treatment outcome, and second, the hypothesis that too low BP values are accompanied by a lower benefit and even higher risk. It is also unknown whether BP lowering and LDL-C lowering have additive beneficial effects for the primary and secondary prevention of stroke, and whether these treatments can prevent cognitive decline after stroke. RESULTS: A review of existing data from randomized controlled trials confirms that solid evidence on optimal BP and LDL-C targets is missing, possible interactions between BP and LDL-C lowering treatments have never been directly investigated, and evidence in favour of a beneficial effect of BP or LDL-C lowering on cognitive decline is, at best, very weak. CONCLUSION: A new, large randomized controlled trial is needed to determine the optimal level of BP and LDL-C for the prevention of recurrent stroke and cognitive decline.
Resumo:
Directed evolution of life through millions of years, such as increasing adult body size, is one of the most intriguing patterns displayed by fossil lineages. Processes and causes of such evolutionary trends are still poorly understood. Ammonoids (externally shelled marine cephalopods) are well known to have experienced repetitive morphological evolutionary trends of their adult size, shell geometry and ornamentation. This study analyses the evolutionary trends of the family Acrochordiceratidae Arthaber, 1911 from the Early to Middle Triassic (251228 Ma). Exceptionally large and bed-rock-controlled collections of this ammonoid family were obtained from strata of Anisian age (Middle Triassic) in north-west Nevada and north-east British Columbia. They enable quantitative and statistical analyses of its morphological evolutionary trends. This study demonstrates that the monophyletic clade Acrochordiceratidae underwent the classical evolute to involute evolutionary trend (i.e. increasing coiling of the shell), an increase in its shell adult size (conch diameter) and an increase in the indentation of its shell suture shape. These evolutionary trends are statistically robust and seem more or less gradual. Furthermore, they are nonrandom with the sustained shift in the mean, the minimum and the maximum of studied shell characters. These results can be classically interpreted as being constrained by the persistence and common selection pressure on this mostly anagenetic lineage characterized by relatively moderate evolutionary rates. Increasing involution of ammonites is traditionally interpreted by increasing adaptation mostly in terms of improved hydrodynamics. However, this trend in ammonoid geometry can also be explained as a case of Copes rule (increasing adult body size) instead of functional explanation of coiling, because both shell diameter and shell involution are two possible paths for ammonoids to accommodate size increase.
Resumo:
The human brain displays heterogeneous organization in both structure and function. Here we develop a method to characterize brain regions and networks in terms of information-theoretic measures. We look at how these measures scale when larger spatial regions as well as larger connectome sub-networks are considered. This framework is applied to human brain fMRI recordings of resting-state activity and DSI-inferred structural connectivity. We find that strong functional coupling across large spatial distances distinguishes functional hubs from unimodal low-level areas, and that this long-range functional coupling correlates with structural long-range efficiency on the connectome. We also find a set of connectome regions that are both internally integrated and coupled to the rest of the brain, and which resemble previously reported resting-state networks. Finally, we argue that information-theoretic measures are useful for characterizing the functional organization of the brain at multiple scales.
Resumo:
Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.