215 resultados para Recombinant monoclonal antibodies


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Treating human melanoma lines with dibutyryl adenosine 3':5'-cyclic monophosphate (dbc AMP) resulted in morphologic changes associated with the altered expression of cell surface antigens. After treatment, cells developed long cellular projections characteristic of mature melanocytes and showed the presence of an increased number of Stage II premelanosomes. In addition, induction of melanin synthesis, detected as brown perinuclear pigmentation, was observed. The AMP further drastically reduced the growth rate of the five melanoma cell lines that were tested. The influence of dbc AMP was completely reversible 3 days after the agent was removed from the culture medium. The antigenic phenotype of the melanoma lines was compared before and after dbc AMP treatment. This was done with four monoclonal antibodies directed against major histocompatibility complex (MHC) Class I and II antigens and 11 monoclonal antibodies defining eight different melanoma-associated antigenic systems. Treatment with dbc AMP reduced the expression of human leukocyte antigen (HLA)-ABC antigens and beta-2-microglobulin in five of five melanoma lines. In the two HLA-DR-positive cell lines dbc AMP reduced the expression of this antigen in one line and enhanced it in the other. No induction of HLA-DR or HLA-DC antigens was observed in the Class II negative cell lines. Furthermore, dbc-AMP modulated the expression of the majority of the melanoma antigenic systems tested. The expression of a 90-kilodalton (KD) antigen, which has been found to be upregulated by interferon-gamma, was markedly decreased in all the five cell lines. A similar decrease in the expression of the high molecular weight proteoglycan-associated antigen (220-240 KD) was observed. The reduced expression of Class I and II MHC antigens as well as the altered expression of the melanoma-associated antigens studied were shown to be reversible after dbc AMP was removed. Our results collectively show that the monoclonal antibody-defined melanoma-associated molecules are linked to differentiation. They could provide useful tools for monitoring the maturation of melanomas in vivo induced by chemical agents or natural components favoring differentiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While it is now well accepted that radiolabeled antibodies can be useful for tumour detection by immunoscintigraphy, the use of larger doses of more aggressive radioisotopes coupled to antibodies for radioimmunotherapy is still in its infancy. At the experimental level, our group has shown that the intravenous injection of large doses of 131I labeled F(ab')2 fragments from monoclonal anti-carcinoembryonic antigen (CEA) antibodies can eradicate well established human colon carcinoma xenografts in nude mice. At the clinical level, in a dosimetry study performed at the Institut Gustave Roussy, the same anti-CEA monoclonal antibodies and fragments, labeled with subtherapeutic doses of 131I, were injected in patients with liver metastases from colorectal carcinomas. Direct measurement of radioactivity in surgically resected liver metastases and normal liver confirmed the specificity of tumour localization of the antibodies, but also showed that the calculated radiation doses which could be delivered by injections of 200 to 300 mCi of 131I labeled antibodies or fragments, remained fairly low, in the range of 1,500 to 3,000 rads. This is obviously insufficient for a single modality treatment. An alternative approach is to inject radiolabeled antibodies intra peritoneally to treat peritoneal carcinomatosis. Several clinical studies using this strategy are presently under evaluation and suggest that positive results can be obtained when the tumour diameters are very small. In systemic radioimmunotherapy, positive results have been obtained in more radiosensitive types of malignancies such as B cell lymphomas by intravenous injection of antibodies directed against B cell differentiation markers or against idiotypic antigens from each lymphoma, and labeled with 131I or 90Y. The major directions of research for improvement of radioimmunotherapy include the design of genetically engineered new forms of humanized antibodies, the synthesis of original chelates for coupling new radioisotopes to antibodies and the development of two step strategies for immunolocalization of radioisotopes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally.The two key enzymatiques systems required for the production of these monocarboxylates are lactate dehydrogenase (LDH; EC1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA and oxydative phosphorylation. RESULTS: In this article, we show, with monoclonal antibodies applied to post-mortem human brain tissues, that the typically glycolytic isoenzyme of lactate dehydrogenase (LDH-5; also called LDHA or LDHM) is selectively present in astrocytes, and not in neurons, whereas pyruvate dehydrogenase (PDH) is mainly detected in neurons and barely in astrocytes. At the regional level, the distribution of the LDH-5 immunoreactive astrocytes is laminar and corresponds to regions of maximal 2-deoxyglucose uptake in the occipital cortex and hippocampus. In hippocampus, we observed that the distribution of the oxidative enzyme PDH was enriched in the neurons of the stratum pyramidale and stratum granulosum of CA1 through CA4, whereas the glycolytic enzyme LDH-5 was enriched in astrocytes of the stratum moleculare, the alveus and the white matter, revealing not only cellular, but also regional, selective distributions. The fact that LDH-5 immunoreactivity was high in astrocytes and occurred in regions where the highest uptake of 2-deoxyglucose was observed suggests that glucose uptake followed by lactate production may principally occur in these regions. CONCLUSION: These observations reveal a metabolic segregation, not only at the cellular but also at the regional level, that support the notion of metabolic compartmentalization between astrocytes and neurons, whereby lactate produced by astrocytes could be oxidized by neurons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have recently shown that immunophotodetection of human colon carcinomas in nude mice and in patients is possible by using anti-carcinoembryonic antigen monoclonal antibodies (MAb) coupled to fluorescein. The most common clinical application of photodiagnosis has been for the detection of squamous cell carcinomas (SCC) in the upper respiratory tract, but the free dyes used have a poor tumor selectivity. We selected the known MAb E48 directed against SCC and coupled it to a fluorescent dye: indopentamethinecyanin (indocyanin). This dye has an advantage over fluorescein in that it emits a more penetrating fluorescent red signal at 667 nm after excitation with a laser ray of 640 nm. In vitro, an conjugate with an indocyanin:MAb molar ratio of 2, and an additional trace labeling with 125I, showed more than 80% of binding to cells from the SCC line A431. In vivo, when injected i.v. into nude mice bearing xenografts of the same carcinoma line, the MAb E48-(indocyanin)2 conjugate was almost as efficient as the unconjugated MAb E48 in terms of specific tumor localization: 15% of the injected dose per g of tumor at 24 h after injection and a tumor:overall normal tissue ratio of 6-8. There was no selective tumor localization of an irrelevant IgG1-(indocyanin)2 conjugate. Immunophotodetection of the s.c. SCC xenografts on mice given injections of 100 micrograms of MAb E48-(indocyanin), conjugate (representing 1 microgram of indocyanin) was performed at 24 h. Upon laser irradiation, clearly detectable red fluorescence from the indocyanin-MAb conjugate was observed specifically in the SCC xenografts across the mouse skin. In comparison, injection of 100 micrograms of a MAb E48 coupled to 2 micrograms of fluorescein gave a specific green fluorescence signal in the tumor xenografts, which was detectable, however, only after removing the mouse skin. Injection i.v. of a 15 times higher amount of free indocyanin (15 micrograms) gave a diffuse red fluorescence signal all over the mouse body with no definite increase in intensity in the tumor, indicating a lack of tumor selectivity of the free dye. The results demonstrate the possibility of broadening and improving the efficiency of tumor immunophotodiagnosis by coupling to a MAb directed against SCC, a fluorescent dye absorbing and emitting at higher wavelength than fluorescein, and thus having deeper tissue penetration and lower tissue autofluorescence. Such a demonstration opens the way to a new form of clinical immunophotodiagnosis and possibly to the development of a more specific approach to phototherapy of early bronchial carcinomas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microtubule-associated protein 1b, previously also referred to as microtubule-associated protein 5 or microtubule-associated protein 1x, is a major component of the juvenile cytoskeleton, and is essential during the early differentiation of neurons. It is required for axonal growth and its function is influenced by phosphorylation. The distribution of microtubule-associated protein 1b in kitten cerebellum and cortex during postnatal development was studied with two monoclonal antibodies. Hybridoma clone AA6 detected a non-phosphorylated site, while clone 125 detected a site phosphorylated by casein-kinase II. On blots, both monoclonal antibodies stained the same two proteins of similar molecular weights, also referred to as microtubule-associated protein 5a and 5b. Antibody 125 detected a phosphorylated epitope on both microtubule-associated protein 1b forms; dephosphorylation by alkaline phosphatase abolished the immunological detection. During development of cat cortex and cerebellum, AA6 stained the perikarya and dendrites of neurons during their early differentiation, and especially labelled newly generated axons. The staining decreased during development, and axonal staining was reduced in adult tissue. In contrast to previous reports which demonstrated that antibodies against phosphorylated microtubule-associated protein 1b label exclusively axons, antibody 125 also localized microtubule-associated protein 1b in cell bodies and dendrites, even in adulthood. Some nuclear staining was observed, indicating that a phosphorylated form of microtubule-associated protein 1b may participate in nuclear function. These results demonstrate that microtubule-associated protein 1b is subject to CK2-type phosphorylation throughout neuronal maturation and suggest that phosphorylation of microtubule-associated protein 1b may participate in juvenile and mature-type microtubule functions throughout development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary One of the major goals of cancer immunotherapy is the induction of a specific and effective antitumor cytotoxic T lymphocyte (CTL) response. However, the downregulation of Class I Major Histocompatibility Complexes (MHC) expression and the low level of tumor peptide presentation on tumor cell surface, ás well as the low immunogenicity of tumor specific antigens, limit the effectiveness of anti-tumor CTL responses. On the other hand, monoclonal antibodies, which bind with high affinity to tumor cell surface markers, are powerful tumor targeting tools. However, their capacity to .kill cancer cells is limited and mAb cancer treatments usually require the addition of different form of chemotherapy. The new cancer immunotherapy strategy described herein combines the advantage of the high tumor targeting capacity of monoclonal antibodies (mAb) with the powerful cytotoxicity of CD8 T lymphocytes directed against highly antigenic peptide-MHC complexes. Monoclonal antibody Fab fragments directed against a cell surface tumor associated antigen (TAA) are chemically coupled to soluble MHC class I complexes carrying a highly antigenic peptide. Antibody guided targeting and oligomerization of numerous antigenic class IMHC/peptide complexes on tumor cell surfaces can redirect the cytotoxicity of peptide-specific CD8 T cells towards target cancer cells. After the description of the production of murine anti-tumor xMHC/peptide conjugates in the first part of this thesis, the therapeutic potential of such conjugates were sequentially investigated in different syngeneic tumor mouse models. As a first proof of principle, transgenic OT-1 mice and later CEA transgenic C57BL/6 (B6) mice, adoptively transferred with OT-1 spleen cells and immunized with ovalbumin, were used as a model of high frequency of ova peptide specific T cells. In these mice, growth inhibition and regression of palpable colon carcinoma expressing CEA, were obtained by systemic injection of anti-CEA Fab/H-2Kb/ova peptide conjugates. Next, LCMV virus and influenza virus infection of B6 mice were used as viral models to redirect natural antiviral CTL responses to tumors via conjugates loaded with viral peptides. We showed that in mice infected with the LCMV virus, subcutaneous CEA-expressing tumor cells were inhibited by the H2Db/GP33 restricted anti-viral CTL response when preincubated before grafting with anti-CEA Fab-H-2Db/GP33 peptide conjugates. In mice infected with the influenza virus, lung metastases expressing the HER2 antigen were inhibited by the H-2Db/NP366 restricted CTLs response when preincubated before injection with anti-Her2 Fab-H-2Db/NP366 peptide conjugates. In the last chapter, the stability of the peptide in the anti-CEA Fab-H-2Db/GP33 conjugates was improved by the covalent photocross-link of the GP33 peptide in the H-2Db MHC groove. Thus, LCMV immune mice could reject CEA expressing tumors when treated with systemic injections of anti-CEA FabH-2Db/GP33 cross-linked conjugates. These results are encouraging for the potential application of this strategy in clinic. Such conjugates could be used alone in patients boosted by the relevant virus, or used in combination with existing T cell based ìmmunotherapy. Résumé Une des principales approches utilisées dans l'immunothérapie contre le cancer consiste en l'induction d'une réponse T cytotoxique (CTL) spécifiquement dirigée contre la tumeur. Cependant, le faible niveau d'expression des complexes majeurs d'histocompatibilité de classe I (CMH I) et de présentation des peptides tumoraux à la surface des cellules cancéreuses ainsi que la faible immunogenicité des antigens tumoraux, limitent l'efficacité de la réponse CTL. D'autre part,. l'injection d'anticorps monoclonaux (mAb), se liant avec une haute affinité aux marqueurs de surface des cellules tumorales, a fourni des résultats cliniques encourageant. Cependant l'efficacité de ces mAbs contre des tumeur solides reste limitée et necessite souvent l'addition de chimiotherapie. La nouvelle stratégie thérapeutique décrite dans ce travail associe le fort pouvoir de localisation des anticorps monoclonaux et le fort pouvoir cytotoxique des lymphocytes T CD8+. Des fragments Fab d'anticorps monoclonaux, dirigés contre des antigènes surexprimés à la surface de cellules tumorales, ont été chimiquement couplés à des CMH I solubles, portant un peptide fortement antigénique. Le ciblage et l'oligomérisation à la surface des cellules tumorales de nombreux CMH I présentant un peptide antigénique, va réorienter la cytotoxicité des cellules T CD8+ spécifiques du peptide présenté, vers les cellules tumorales cibles. Après une description de la production de conjugé anti-tumeur x CMH Upeptide dans la première partie de cette thèse, le potentiel thérapeutique de tels conjugés a été successivement étudiés in vivo dans différents modèles de tumeur syngénéiques. Tout d'abord, des souris OT-1 transgéniques, puis des souris C57BL/6 (B6) transférées avec des cellules de rate OT-1 puis immunisées avec l'ovalbumine, ont été employées comme modèle de haute fréquence de cellules T CD8+ spécifiques du peptide ova. Chez ces souris, l'inhibition de la croissance et la régression de nodules palpables de carcinomes exprimant l'antigène caccino embryonaire (ACE), ont été obtenues par l'injection systémique de conjugés anti-ACE Fab/H-2Kb/ova. Par la suite, l'infection de souris B6 par le virus LCMV et par le virus de la grippe, ont été utilisés comme modèles viraux pour redirigées des réponses anti-virales naturelles vers les tumeurs, en utilisant des conjugés chargés avec des peptides viraux. Nous avons montré que .chez les souris infectées par le LCMV, la croissance de carcinome sous-cutané est empêchée par la réponse anti-virale, spécifique du complexe H2Db/GP33, lorsque les cellules tumorales greffées sont pré-incubées avec des conjugés anti-CEA Fab-H-2Db/GP33. Dans le cas de souris infectées par le virus de la grippe, la métastatisation de mélanomes pulmonaires exprimant l'antigène HER-2 est inhibée par la réponse anti-virale spécifique du complexe H-2Db/NP366, après pré-incubation des cellules tumorales avec des conjugés anti-Her2 FabxH-2Db/NP366. Dans le dernier chapitre, la liaison covalente du peptide GP33 dans le complexe H-2Db a amélioré la stabilité des conjugés correspondants et a permis le traitement systémique de souris greffées avec des tumeurs exprimant l'ACE et infectées par le LCMV. L'ensemble de ces résultats sont encourageant pour l'application de cette strategie en clinique. De tels conjugués pourraient être employés seuls ou en combinaison avec des protocols d'immunisation peptidique anti-tumoral. Résumé pour un large public Dans les pays industrialisés, le cancer se situe au deuxième rang des causes de mortalité après les maladies cardiovasculaires. Les principaux traitement de nombreux cancers sont la chirurgie, en association avec la radiothérapie et la chimiothérapie. L'immunothérapie est l'une des nouvelles approches mises en oeuvre pour la lutte contre le cancer. Elle peut être humorale, et s'appuyer alors sur la perfusion d'anticorps monoclonaux dirigés contre des antigènes tumoraux, par exemple les anticorps dirigés contre les protéines oncogéniques Her-2/neu dans le cancer du sein. Ces anticorps ont le grand avantage de spécifiquement se localiser à la tumeur et d'induire la lyse ou d'inhiber la proliferation des cellules tumorales exprimant l'antigène. Certains sont utilisés en clinique pour le traitement de lymphomes, de carcinomes de l'ovaire et du sein ou encore de carcinomes metastatiques du côlon. Cependant l'efficacité de ces anticorps contre des tumeurs solides reste limitée et les traitements exigent souvent d'être combiner avec de la chimiothérapie. L'immunothérapie spécifique peut également être cellulaire et reposer sur une démarche de type vaccinal, consistant à générer des lymphocytes T cytotoxiques (cytotoxic T lymphocytes :CTL) capables de détruire spécifiquement les cellules malignes. Pour obtenir une réponse lymphocytaire T cytotoxique antitumorale, la cellule T doit reconnaître un antigène associé à la tumeur, présenté sous forme de peptide dans un complexe majeur d'histocompatibilité de classe I. Or les cellules tumorales ne presentent pas efficacement les peptides antigèniques, car elles se caractérisent par une diminution ou une absence d'expression des antigènes d'histocompatibilité de classe I, des molécules d'adhésion et des cytokines costimulatrices, et par une faible expression des antigènes associés aux tumeurs. C'est en partie pourquoi, malgré l'induction de fortes réponses CTL specifiquement dirigés contre des antigens tumoraux, les régressions tumorales obtenus grace à ces vaccinations sont relativement rares. Alors que chez les personnes atteintes du cancer on observe l'instauration d'une tolérance immunitaire vis-à-vis de la tumeur, à l'inverse, notre systeme immunitaire reste parfaitement capable de combattre des infection virales classiques, tels que la grippe, qui font aussi appel à une réponse T cytotoxique. Notre groupe de recherche a donc eu l'idee de développer une nouvelle approche thérapeutique où une réponse immunitaire anti-virale très efficace serait redirigée vers les tumeurs par des anticorps monoclonaux. Concrètement, nous avons chimiquement couplés des fragments d'anticorps monoclonaux dirigés contre des antigènes surexprimés à la surface de cellules tumorales, à des CMH I portant un peptide viral antigénique. Les cellules tumorales, ciblées par le fragment anticorps et couvertes d' antigènes viraux présentés par des molécules de CMH I, peuvent ainsi tromper les lymphocytes cytotoxiques anti-viraux qui vont détruire les cellules tumorales comme si elles étaient infectées par le virus. Suite à des résultats prometteurs obtenus in vitro avec différents conjugués anticorps-CMH humain de type HLA.A2/peptide Flu, le but du projet était de tester in vivo des conjugués anticorps-CMH I murins sur des modèles expérimentaux de souris. Tout d'abord, des souris transgéniques pour un recepteur T specifique du peptide ova, puis des transferts adoptifs de ces cellules T specifiques dans des souris immunocompétentes, ont été choisi comme modèle de haute fréquence des cellules T spécifiques, et ont permi de valider le principe de la strategie in vivo. Puis, deux modèles viraux ont été elaboré avec le virus LCMV et le virus Influenza, pour réorienter des réponses antivirales naturelles vers les tumeurs grâce à des conjugés chargés avec des peptides viraux. Nous avons montré la grande capacité de nos conjugués à rediriger des réponses cytotoxiques vers les tumeurs et inhiber la croissance de tumeurs syngénéiques sous cutanés et pulmonaires. Ces résultats d'inhibition tumorales obtenus dans des souris immunocompétentes, grâce à l'injection de conjugués anticorps xCMH/peptide et réorientant deux réponses antivirales différentes vers deux modèles tumoraux syngeneiques, sont encourageant pour l'application de cette nouvelle stratégie en clinique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two 131-Iodine radiolabelled monoclonal antibodies were used to perform tomoscintigraphy in 42 patients: 11 patients bearing medullary thyroid cancers and 19 patients bearing gastrointestinal cancers received an antibody directed against carcino-embryonic antigen; 12 patients bearing gastro-intestinal cancers received an antibody directed against a non circulating antigen expressed by human colorectal cancers cell lines. Tomoscintigraphy is particularly useful for analysing the complex biodistribution of radiolabelled antibodies and the low contrast images encountered in immunoscintigraphy; the problems related to the true positive rate and to the clinical specificity of the method are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are strong research activities in the field of dysimmune neuropathies. In Guillain-Barré syndrome, new pathophysiological mechanisms have been demonstrated with the potential development of new therapies, a clinical prediction model is applicable early in the course of disease, and under investigation are new treatment strategies with adapted intravenous Ig dosages. In chronic inflammatory demyelinating polyneuropathies, current diagnostic tests are discussed but biomarkers are needed, such as histological changes or differential gene expression in nerve or skin biopsies. The exploration of novel therapeutic approaches including monoclonal antibodies and oral immunosuppressants, known from multiple sclerosis studies, suggests new approaches to treatment. Changes of the peripheral nerves on MR imaging are better known and the usefulness of serum antibodies is reviewed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The biological activity of interleukin (IL)-2 and other cytokines in vivo can be augmented by binding to certain anti-cytokine monoclonal antibodies (mAb). Here, we review evidence on how IL-2/anti-IL-2 mAb complexes can be used to cause selective stimulation and expansion of certain T-cell subsets. With some anti-IL-2 mAbs, injection of IL-2/mAb complexes leads to expansion of CD8 T effector cells but not CD4 T regulatory cells (Tregs); these complexes exert less adverse side effects than soluble IL-2 and display powerful antitumor activity. Other IL-2/mAb complexes have minimal effects on CD8 T cells but cause marked expansion of Tregs. Preconditioning mice with these complexes leads to permanent acceptance of MHC-disparate pancreatic islets in the absence of immunosuppression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Advanced stage follicular lymphoma is incurable by conventional treatment. Important progress has been observed with the development of new therapies based on monoclonal antibodies and on the use of radioimmunotherapy (RIT) in the treatment of non-Hodgkin lymphomas (NHL). Rituximab in combination with chemotherapy in the upfront setting significantly improved treatment outcome as compared with chemotherapy alone. Different studies also indicate that RIT has an important role in the management of NHL and could be beneficial in combination with chemotherapy. These two new treatment options have clearly distinctive mechanisms of action, rituximab being an exclusively biological treatment and RIT adding targeted systemic radiation therapy. Both RIT and the unlabeled antibody treatments might be further improved by different strategies including repetition of RIT or combination of different antibodies. We present here our experience with RIT using 131I-tositumomab (Bexxar) and discuss different topics regarding RIT, like the use of different antibodies, the best choice of the radioisotope or the place of radio-imaging. From the therapeutic point of view, we argue that the debate should not be as to which one among antibody immunotherapy or RIT should be best added to chemotherapy, but that all three treatments might be optimally combined with the aim to get the highest chance of cure for advanced stage follicular lymphoma.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A variant 35 kb upstream of the HLA-C gene (-35C/T) was previously shown to associate with HLA-C mRNA expression level and steady-state plasma HIV RNA levels. We genotyped this variant in 1,698 patients of European ancestry with HIV. Individuals with known seroconversion dates were used for disease progression analysis and those with longitudinal viral load data were used for viral load analysis. We further tested cell surface expression of HLA-C in normal donors using an HLA-C-specific antibody. We show that the -35C allele is a proxy for high HLA-C cell surface expression, and that individuals with high-expressing HLA-C alleles progress more slowly to AIDS and control viremia significantly better than individuals with low HLA-C expressing alleles. These data strongly implicate high HLA-C expression levels in more effective control of HIV-1, potentially through better antigen presentation to cytotoxic T lymphocytes or recognition and killing of infected cells by natural killer cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: In contrast to other human tumors, a repression of the cell-surface glycoprotein CD44 on neuroblastoma is a marker of aggressiveness that usually correlates to N-myc amplification. We thus compared the prognostic value of both markers in the initial staging of 121 children treated for neuroblastoma in collaborative institutions. METHODS: Frozen samples were analyzed by a rapid and well-standardized technique of immunostaining with monoclonal antibodies (MoAbs) against epitopes in the CD44 constant region. RESULTS: In this retrospective series, CD44 was expressed on 102 specimens and strongly correlated with favorable tumor stages and histology, younger age, and normal N-myc copy numbers. In univariate analysis, CD44 expression and normal N-myc were the most powerful markers of favorable clinical outcome (P < 10(-6) and chi 2 = 65.40 and P < 10(-6) and chi 2 = 42.56, respectively), but analysis of CD44 affords significant prognostic discrimination in subgroups of patients with or without N-myc-amplified tumors. In the subgroup of stage IV neuroblastomas, CD44 was the only significant prognostic marker (P < .02, chi 2 = 5.76), whereas N-myc status was not discriminant. In multivariate analysis of five factors, ie, N-myc amplification, CD44 expression, age, tumor stage, and histology, the only independent prognostic factors of event-free survival were CD44 expression and tumor stage. CONCLUSION: The analysis of CD44 cell-surface expression must be recommended as an additional biologic marker in the initial staging of the disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Timing effects of radioimmunotherapy (RIT) combined with external-beam radiotherapy (RT) were assessed in human colon carcinoma xenografts. Initially, dose effects of fractionated RT and RIT were evaluated separately. Then, 30 Gy RT (10 fractions over 12 days) were combined with three weekly i.v. injections of 200 microCi of 131I-labeled anti-carcinoembryonic antigen monoclonal antibodies in four different treatment schedules. RIT was given either prior to, concurrently, immediately after, or 2 weeks after RT administration. The longest regrowth delay (RD) of 105 days was observed in mice treated by concurrent administration of RT and RIT, whereas the RDs of RT and RIT alone were 34 and 20 days, respectively. The three sequential combination treatments produced significantly shorter RDs ranging from 62 to 70 days. The tumor response represented by the minimal volume (MV) also showed that concurrent administration of RT and RIT gave the best result, with a mean MV of 4.5% as compared to MVs from 26 to 53% for the three sequential treatments. The results were confirmed in a second experiment, in which a RT of 40 Gy was combined with an identical RIT as above (three injections of 200 microCi of 131I-labeled monoclonal antibodies). At comparable toxicity levels, the maximum tolerated RT or RIT alone gave shorter RDs and less tumor shrinkage compared to simultaneous RT+ RIT. These results may be useful for designing clinical protocols of combined RIT and RT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Prominin-1 (CD133) is physiologically expressed at the apical membranes of secretory (serous and mucous) and duct cells of major salivary glands. We investigated its expression in various human salivary gland lesions using two distinct anti-prominin-1 monoclonal antibodies (80B258 and AC133) applied on paraffin-embedded sections and characterized its occurrence in saliva. The 80B258 epitope was extensively expressed in adenoid cystic carcinoma, in lesser extent in acinic cell carcinoma and pleomorphic adenoma, and rarely in mucoepidermoid carcinoma. The 80B258 immunoreactivity was predominately detected at the apical membrane of tumor cells showing acinar or intercalated duct cell differentiation, which lined duct- or cyst-like structures, and in luminal secretions. It was observed on the whole cell membrane in non-luminal structures present in the vicinity of thin-walled blood vessels and hemorrhagic areas in adenoid cystic carcinoma. Of note, AC133 labeled only a subset of 80B258-positive structures. In peritumoral salivary gland tissues as well as in obstructive sialadenitis, an up-regulation of prominin-1 (both 80B258 and AC133 immunoreactivities) was observed in intercalated duct cells. In most tissues, prominin-1 was partially co-expressed with two cancer markers: carcinoembryonic antigen (CEA) and mucin-1 (MUC1). Differential centrifugation of saliva followed by immunoblotting indicated that all three markers were released in association with small membrane vesicles. Immuno-isolated prominin-1-positive vesicles contained CEA and MUC1, but also exosome-related proteins CD63, flotillin-1, flotillin-2 and the adaptor protein syntenin-1. The latter protein was shown to interact with prominin-1 as demonstrated by its co-immunoisolation. A fraction of saliva-associated prominin-1 appeared to be ubiquitinated. Collectively, our findings bring new insights into the biochemistry and trafficking of prominin-1 as well as its immunohistochemical profile in certain types of salivary gland tumors and inflammatory diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Follicular lymphoma is a slow-growing disease exhibiting a heterogeneous clinical course, with a subset of patients experiencing a rapid disease course in the first two years and some developing disease transformation to a more aggressive phenotype. The advent of highly effective therapies has resulted in an increasing number of patients who achieve long-term progression-free survival alongside a good quality of life. Monoclonal antibodies, such as rituximab, either alone or in combination with chemotherapy regimens or radioimmunotherapy have been used with significant improvements in outcome. New treatment strategies such as new antibodies, biologic agents or vaccination therapy are also under investigation for the treatment of relapsed or refractory disease, further expanding the available options for patients and physicians alike. This article presents an overview of the current therapeutic strategies for the management of follicular lymphoma, focusing on the issues encountered in clinical practice.