175 resultados para Pseudomonas aeruginosa


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Delta3,Delta2-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10-25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through beta-oxidation was more severely reduced in mutants devoid of Delta3,Delta2-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Delta3,Delta2-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Summary Polyhydroxyalkanoates (PHAs) represent a family of polyesters naturally synthesized by a wide variety of bacteria. Through their thermoplastic and elastomeric qualities, together with their biodegradable and renewable properties, they are predicted to be a good alternative to the petroleum- derived plastics. Nevertheless, as PHA production costs using bacteria fermentation are still too high, PHA synthesis within eukaryotic systems, such as plants, has been elaborated. Although the costs were then efficiently lowered, the yield of PHAs produced remained low. In this study, Saccharomyces cerevisae has been used as another eukaryotic model in order to reveal the steps which limit PHA production. These cells express the PHA synthase of Pseudomonas aeruginosa and the PHAs obtained were analyzed to understand the flux of fatty acids towards and through the peroxisomal β-oxidation core cycle, generating the main substrate of the PHA synthase. When S. cerevisiae wild-type cells are grown in a media containing glucose as carbon source as well as fatty acids, the PHA monomer composition is largely influenced by the nature of the external fatty acid used. Thus, even-chain PHA monomers are generated from oleic acid (18:1Δ9cis) and odd- chain PHA monomers are generated from heptadecenoic acid (17:1Δ. 10 cis). Moreover, PHA synthesis is dependent on the first two enzymes of the 0-oxidation core cycle, the acyl-CoA oxidase and the multifunctional enzyme enoyl-CoA hydratase II / R-3-hydroxyacyl-CoA dehydrogenase. S. cerevisiae mutant cells growing on oleic or heptadecenoic acid and deficient in either the R-3- hydroxyacyl-CoA dehydrogenase or in the 3-ketothiolase activity, the last β-oxidation cycle steps, surprisingly contained PHAs of predominantly even-chain monomers. This is also noticed in wild- type and mutants grown on glucose or raffinose, indicating that the substrate used for PHA synthesis is generated from the degradation of intracellular short- and medium-chain fatty acids by the 3- oxidation cycle. Inhibition of fatty acid biosynthesis by cerulenin blocks the synthesis of PHAs from intracellular fatty acids but still enables the use of extracellular fatty acids for polymer production. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed towards the peroxisomal β-oxidation pathway. In this thesis, no increase of the yield of PHA produced could be obtained. But the PHA synthesis confirmed the carbon flux into and through the β-oxidation core cycle and unveiled the existence of novel mechanisms. It is thus a good tool to study in vivo the flux of carbons in S. cerevisiae cells. Résumé Les polyhydroxyalkanoates (PHAs) sont une famille de polyesters naturellement synthétisés par un grand nombre de bactéries. Ayant des propriétés de thermoplastiques, d'élastomères et étant des ressources biodégradables et renouvelables, les PHAs représentent une bonne alternative aux plastiques dérivés du pétrole. Pour pallier aux coûts considérables de la production de PHAs par fermentation bactérienne, la synthèse de PHAs par des systèmes eucaryotes telles les plantes a été élaborée. Les coûts ont ainsi efficacement été diminués, mais le rendement de PHAs produits reste faible. Dans cette étude, Saccharomyces cerevisiae a été utilisé comme autre modèle eucaryote pour révéler les étapes limitantes de la production de PHAs. Les PHAs obtenus dans les cellules exprimant la F'HA synthase de Pseudomonas aeruginosa ont été analysés afin de comprendre le flux d'acides gras vers et à travers le cycle péroxisomal de la β-oxidation, principal producteur du substrat de la PHA synthase. Lorsque la souche S. cerevisiae de type sauvage se développe dans un milieu contenant du glucose et des acides gras, la composition des monomères de PHAs est influencée par la nature des acides gras extracellulaires. Ainsi, les monomères pairs sont générés par l'acide oléique (18:1Δ9cis), tandis que les impairs le sont par l'acide heptadécénoïque (17:1Δ10cis). La synthèse de PHAs est dépendante des deux premières enzymes de la β-oxidation; l'acyl-CoA oxidase et l'enzyme multifonctionnelle enoyl-CoA hydratase II / R-3-hydroxyacyl-CoA déshydrogénase. Les souches mutantes ne possédant pas les activités de la R-3-hydroxyacyl-CoA déshydrogénase ou de la 3- ketothiolase contiennent, en présence d'acide oléique ou heptadécénoïque, des PHAs composés essentiellement de monomères pairs. Cela a également été observé en présence de glucose ou de raffinose uniquement. Le substrat utilisé pour la synthèse de PHAs a ainsi été généré par la dégradation d'acides gras intracellulaires à chaîne courte et moyenne via le cycle de la β-oxidation. L'inhibition de la synthèse d'acides gras par la cérulénine a bloqué la synthèse de PHAs par les acides gras internes. Ces résultats ont révélés l'existence d'un cycle futile par lequel des intermédiaires à chaîne courte et moyenne de la synthèse cytoplasmique d'acides gras sont dirigés vers le cycle péroxisomal de la β-oxidation. Dans cette étude, le rendement de PHAs produits reste inchangé, mais l'analyse des PHAs permet de confirmer le flux de carbones vers et à travers le cycle péroxisomal de la β-oxidation et l'existence de nouveaux méchanismes a été dévoilée. Cette synthèse s'avère être un bon outil pour étudier in vivo le flux de carbones dans les cellules de S. cerevisiae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Catalase is an important virulence factor for survival in macrophages and other phagocytic cells. In Chlamydiaceae, no catalase had been described so far. With the sequencing and annotation of the full genomes of Chlamydia-related bacteria, the presence of different catalase-encoding genes has been documented. However, their distribution in the Chlamydiales order and the functionality of these catalases remain unknown. Phylogeny of chlamydial catalases was inferred using MrBayes, maximum likelihood, and maximum parsimony algorithms, allowing the description of three clade 3 and two clade 2 catalases. Only monofunctional catalases were found (no catalase-peroxidase or Mn-catalase). All presented a conserved catalytic domain and tertiary structure. Enzymatic activity of cloned chlamydial catalases was assessed by measuring hydrogen peroxide degradation. The catalases are enzymatically active with different efficiencies. The catalase of Parachlamydia acanthamoebae is the least efficient of all (its catalytic activity was 2 logs lower than that of Pseudomonas aeruginosa). Based on the phylogenetic analysis, we hypothesize that an ancestral class 2 catalase probably was present in the common ancestor of all current Chlamydiales but was retained only in Criblamydia sequanensis and Neochlamydia hartmannellae. The catalases of class 3, present in Estrella lausannensis and Parachlamydia acanthamoebae, probably were acquired by lateral gene transfer from Rhizobiales, whereas for Waddlia chondrophila they likely originated from Legionellales or Actinomycetales. The acquisition of catalases on several occasions in the Chlamydiales suggests the importance of this enzyme for the bacteria in their host environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many Gram-negative bacteria possess a type III secretion system (TTSS( paragraph sign)) that can activate the NLRC4 inflammasome, process caspase-1 and lead to secretion of mature IL-1beta. This is dependent on the presence of intracellular flagellin. Previous reports have suggested that this activation is independent of extracellular K(+) and not accompanied by leakage of K(+) from the cell, in contrast to activation of the NLRP3 inflammasome. However, non-flagellated strains of Pseudomonas aeruginosa are able to activate NLRC4, suggesting that formation of a pore in the cell membrane by the TTSS apparatus may be sufficient for inflammasome activation. Thus, we set out to determine if extracellular K(+) influenced P. aeruginosa inflammasome activation. We found that raising extracellular K(+) prevented TTSS NLRC4 activation by the non-flagellated P. aeruginosa strain PA103DeltaUDeltaT at concentrations above 90 mm, higher than those reported to inhibit NLRP3 activation. Infection was accompanied by efflux of K(+) from a minority of cells as determined using the K(+)-sensitive fluorophore PBFI, but no formation of a leaky pore. We obtained exactly the same results following infection with Salmonella typhimurium, previously described as independent of extracellular K(+). The inhibitory effect of raised extracellular K(+) on NLRC4 activation thus reflects a requirement for a decrease in intracellular K(+) for this inflammasome component as well as that described for NLRP3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tigecycline has been investigated in combination with other antibacterials against a wide range of susceptible and multiresistant Gram-positive and Gram-negative bacteria. Combinations have been analysed in vitro, in animal models and in human case reports. In vitro, tigecycline combined with other antimicrobials produces primarily an indifferent response (neither synergy nor antagonism). Nevertheless, synergy occurred when tigecycline was combined with rifampicin against 64-100% of Enterococcus spp., Streptococcus pneumoniae, Enterobacter spp. and Brucella melitensis isolates. Combinations of tigecycline with amikacin also showed synergy for 40-100% of Enterobacter spp., Klebsiella pneumoniae, Proteus spp. and Stenotrophomonas maltophilia isolates. Moreover, bactericidal synergisms occurred with tigecycline plus amikacin against problematic Acinetobacter baumannii and Proteus vulgaris, and with colistin against K. pneumoniae. Data from animal experiments and case reports, although limited, displayed consistent beneficial activity of tigecycline in combination with other antibacterials against multiresistant organisms, including vancomycin against penicillin-resistant S. pneumoniae in experimental meningitis, gentamicin against Pseudomonas aeruginosa in experimental pneumonia, daptomycin against Enterococcus faecium endocarditis, and colistin against K. pneumoniae bacteraemia and P. aeruginosa osteomyelitis. Antagonism was extremely rare in vitro and was not reported in vivo. Thus, tigecycline may be combined with a second antimicrobial as part of a combination regimen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The siderophore pyochelin of Pseudomonas aeruginosa promotes growth under iron limitation and induces the expression of its biosynthesis genes via the transcriptional AraC/XylS-type regulator PchR. Pseudomonas fluorescens strain CHA0 makes the optical antipode of pyochelin termed enantio-pyochelin, which also promotes growth and induces the expression of its biosynthesis genes when iron is scarce. Growth promotion and signalling by pyochelin and enantio-pyochelin are highly stereospecific and are known to involve the pyochelin and enantio-pyochelin outer-membrane receptors FptA and FetA, respectively. Here we show that stereospecificity in signalling is also based on the stereospecificity of the homologous PchR proteins of P. aeruginosa and P. fluorescens towards their respective siderophore effectors. We found that PchR functioned in the heterologous species only if supplied with its native ligand and that the FptA and FetA receptors enhanced the efficiency of signalling. By constructing and expressing hybrid and truncated PchR regulators we showed that the weakly conserved N-terminal domain of PchR is responsible for siderophore specificity. Thus, both uptake and transcriptional regulation confer stereospecificity to pyochelin and enantio-pyochelin biosynthesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Negative pressure wound treatment is increasingly used through a Vacuum-Assisted Closure (VAC) device in complex wound situations. For this purpose, sterile polyurethane (PU) and polyvinyl alcohol (PVA) foam dressings are fitted to the wound size and covered with an adhesive drape to create an airtight seal. Little information exists about the type and quantity of microorganisms within the foams. Therefore, we investigated VAC foams after removal from the wound using a validated method (sonication) to detect the bacterial bioburden in the foam consisting as microbial biofilms.Methods: We prospectively included VAC foams (PU and PVA, KCI, Rümlamg, Switzerland) without antibacterial additions (e.g. silver), which were removed from wounds in patients with chronic ulcers from January 2007 through December 2008. Excluded were patients with acute wound infection, necrotizing fasciitis, underlying osteomyelitis or implant. Removed foams from regular changes of dressing were aseptically placed in a container with 100 ml sterile Ringer's solution. Within 4 hours after removal, foams were sonicated for 5 min at 40 kHz (as described in NEJM 2007;357:654). The resulting sonication fluid was cultured at 37°C on aerobic blood agar plates for 5 days. Microbes were quantified as No. of colony-forming units (CFU)/ml sonication fluid and identified to the species level.Results: A total of 68 foams (38 PU and 30 PVA) from 55 patients were included in the study (median age 71 years; range 33-88 years, 57% were man). Foams were removed from the following anatomic sites: sacrum (n=29), ischium (n=18), heel (n=13), calves (n=6) and ankle (n=2). The median duration of being in place was 3 days (range, 1-8 days). In all 68 foams, bacteria were found in large quantities (median 105 CFU/ml, range 102-7 CFU/ml sonication fluid. No differences were found between PU and PVA foams. One type of organisms was found in 11 (16%), two in 17 (24%) and 3 or more in 40 (60%) foams. Gram-negative rods (Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa) were isolated in 70%, followed by Staphylococcus aureus (20%), koagulase-negative staphylococci, streptococci (8%), and enterococci (2%).Conclusion: With sonication, a high density of bacteria present in VAC foams was demonstrated after a median of 3 days. Future studies are needed to investigate whether antimicrobial-impregnated foams can reduce the bacterial load in foams and potentially improve wound healing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recombinant strains of the oleaginous yeast Yarrowia lipolytica expressing the PHA synthase gene (PhaC) from Pseudomonas aeruginosa in the peroxisome were found able to produce polyhydroxyalkanoates (PHA). PHA production yield, but not the monomer composition, was dependent on POX genotype (POX genes encoding acyl-CoA oxidases) (Haddouche et al. FEMS Yeast Res 10:917-927, 2010). In this study of variants of the Y. lipolytica β-oxidation multifunctional enzyme, with deletions or inactivations of the R-3-hydroxyacyl-CoA dehydrogenase domain, we were able to produce hetero-polymers (functional MFE enzyme) or homo-polymers (with no 3-hydroxyacyl-CoA dehydrogenase activity) of PHA consisting principally of 3-hydroxyacid monomers (>80%) of the same length as the external fatty acid used for growth. The redirection of fatty acid flux towards β-oxidation, by deletion of the neutral lipid synthesis pathway (mutant strain Q4 devoid of the acyltransferases encoded by the LRO1, DGA1, DGA2 and ARE1 genes), in combination with variant expressing only the enoyl-CoA hydratase 2 domain, led to a significant increase in PHA levels, to 7.3% of cell dry weight. Finally, the presence of shorter monomers (up to 20% of the monomers) in a mutant strain lacking the peroxisomal 3-hydroxyacyl-CoA dehydrogenase domain provided evidence for the occurrence of partial mitochondrial β-oxidation in Y. lipolytica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Signal extracts prepared from culture supernatants of Pseudomonas fluorescens CHA0 and Pseudomonas aeruginosa PAO stimulated GacA-dependent expression of small RNAs and hence of antibiotic compounds in both hosts. Pseudomonas corrugata LMG2172 and P. fluorescens SBW25 also produced signal molecules stimulating GacA-controlled antibiotic synthesis in strain CHA0, illustrating a novel, N-acyl-homoserine lactone-independent type of interspecies communication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When all three separate quorum-sensing signals act in concert in Vibrio harveyi, they maximize bioluminescence and fully repress type III secretion. V. harveyi has five qrr loci encoding small RNA regulatory molecules, each consisting of about 100 nucleotides; several of them are involved in repressing bioluminescence. Small RNAs also play roles in population density-dependent activities, including regulation of virulence factors, for bacterial pathogens such as Pseudomonas fluorescens, V. cholerae, Salmonella enterica, Pseudomonas aeruginosa, and Erwinia spp. Although some bacteria appear to carry redundant copies of small RNA genes with which to finely tune expression

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pyochelin (Pch) and enantio-pyochelin (EPch) are enantiomer siderophores that are produced by Pseudomonas aeruginosa and Pseudomonas fluorescens, respectively, under iron limitation. Pch promotes growth of P. aeruginosa when iron is scarce, and EPch carries out the same biological function in P. fluorescens. However, the two siderophores are unable to promote growth in the heterologous species, indicating that siderophore-mediated iron uptake is highly stereospecific. In the present work, using binding and iron uptake assays, we found that FptA, the Fe-Pch outer membrane transporter of P. aeruginosa, recognized (K(d) = 2.5 +/- 1.1 nm) and transported Fe-Pch but did not interact with Fe-EPch. Likewise, FetA, the Fe-EPch receptor of P. fluorescens, was specific for Fe-EPch (K(d) = 3.7 +/- 2.1 nm) but did not bind and transport Fe-Pch. Growth promotion experiments performed under iron-limiting conditions confirmed that FptA and FetA are highly specific for Pch and EPch, respectively. When fptA and fetA along with adjacent transport genes involved in siderophore uptake were swapped between the two bacterial species, P. aeruginosa became able to utilize Fe-EPch as an iron source, and P. fluorescens was able to grow with Fe-Pch. Docking experiments using the FptA structure and binding assays showed that the stereospecificity of Pch recognition by FptA was mostly due to the configuration of the siderophore chiral centers C4'' and C2'' and was only weakly dependent on the configuration of the C4' carbon atom. Together, these findings increase our understanding of the stereospecific interaction between Pch and its outer membrane receptor FptA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crushed seeds of the Moringa oleifera tree have been used traditionally as natural flocculants to clarify drinking water. We previously showed that one of the seed peptides mediates both the sedimentation of suspended particles such as bacterial cells and a direct bactericidal activity, raising the possibility that the two activities might be related. In this study, the conformational modeling of the peptide was coupled to a functional analysis of synthetic derivatives. This indicated that partly overlapping structural determinants mediate the sedimentation and antibacterial activities. Sedimentation requires a positively charged, glutamine-rich portion of the peptide that aggregates bacterial cells. The bactericidal activity was localized to a sequence prone to form a helix-loop-helix structural motif. Amino acid substitution showed that the bactericidal activity requires hydrophobic proline residues within the protruding loop. Vital dye staining indicated that treatment with peptides containing this motif results in bacterial membrane damage. Assembly of multiple copies of this structural motif into a branched peptide enhanced antibacterial activity, since low concentrations effectively kill bacteria such as Pseudomonas aeruginosa and Streptococcus pyogenes without displaying a toxic effect on human red blood cells. This study thus identifies a synthetic peptide with potent antibacterial activity against specific human pathogens. It also suggests partly distinct molecular mechanisms for each activity. Sedimentation may result from coupled flocculation and coagulation effects, while the bactericidal activity would require bacterial membrane destabilization by a hydrophobic loop.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are polyesters naturally produced by bacteria that have properties of biodegradable plastics and elastomers. A PHA synthase from Pseudomonas aeruginosa modified at the carboxy-end for peroxisomal targeting was transformed in Pichia pastoris. The PHA synthase was expressed under the control of the promoter of the P. pastoris acyl-CoA oxidase gene. Synthesis of up to 1% medium-chain-length PHA per g dry weight was dependent on both the expression of the PHA synthase and the presence of oleic acid in the medium. PHA accumulated as inclusions within the peroxisomes. P. pastoris could be used as a model system to study how peroxisomal metabolism needs to be modified to increase PHA production in other eukaryotes, such as plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oleaginous yeast Yarrowia lipolytica possesses six acyl-CoA oxidase (Aox) isoenzymes encoded by genes POX1-POX6. The respective roles of these multiple Aox isoenzymes were studied in recombinant Y. lipolytica strains that express heterologous polyhydroxyalkanoate (PHA) synthase (phaC) of Pseudomonas aeruginosa in varying POX genetic backgrounds, thus allowing assessment of the impact of specific Aox enzymes on the routing of carbon flow to β-oxidation or to PHA biosynthesis. Analysis of PHA production yields during growth on fatty acids with different chain lengths has revealed that the POX genotype significantly affects the PHA levels, but not the monomer composition of PHA. Aox3p function was found to be responsible for 90% and 75% of the total PHA produced from either C9:0 or C13:0 fatty acid, respectively, whereas Aox5p encodes the main Aox involved in the biosynthesis of 70% of PHA from C9:0 fatty acid. Other Aoxs, such as Aox1p, Aox2p, Aox4p and Aox6p, were not found to play a significant role in PHA biosynthesis, independent of the chain length of the fatty acid used. Finally, three known models of β-oxidation are discussed and it is shown that a 'leaky-hose pipe model' of the cycle can be applied to Y. lipolytica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: Cefepime has been associated with a greater risk of mortality than other beta-lactams in patients treated for severe sepsis. Hypotheses for this failure include possible hidden side-effects (for example, neurological) or inappropriate pharmacokinetic/pharmacodynamic (PK/PD) parameters for bacteria with cefepime minimal inhibitory concentrations (MIC) at the highest limits of susceptibility (8 mg/l) or intermediate-resistance (16 mg/l) for pathogens such as Enterobacteriaceae, Pseudomonas aeruginosa and Staphylococcus aureus. We examined these issues in a prospective non-interventional study of 21 consecutive intensive care unit (ICU) adult patients treated with cefepime for nosocomial pneumonia. METHODS: Patients (median age 55.1 years, range 21.8 to 81.2) received intravenous cefepime at 2 g every 12 hours for creatinine clearance (CLCr) >or= 50 ml/min, and 2 g every 24 hours or 36 hours for CLCr < 50 ml/minute. Cefepime plasma concentrations were determined at several time-points before and after drug administration by high-pressure liquid chromatography. PK/PD parameters were computed by standard non-compartmental analysis. RESULTS: Seventeen first-doses and 11 steady states (that is, four to six days after the first dose) were measured. Plasma levels varied greatly between individuals, from two- to three-fold at peak-concentrations to up to 40-fold at trough-concentrations. Nineteen out of 21 (90%) patients had PK/PD parameters comparable to literature values. Twenty-one of 21 (100%) patients had appropriate duration of cefepime concentrations above the MIC (T>MIC >or= 50%) for the pathogens recovered in this study (MIC <or= 4 mg/l), but only 45 to 65% of them had appropriate coverage for potential pathogens with cefepime MIC >or= 8 mg/l. Moreover, 2/21 (10%) patients with renal impairment (CLCr < 30 ml/minute) demonstrated accumulation of cefepime in the plasma (trough concentrations of 20 to 30 mg/l) in spite of dosage adjustment. Both had symptoms compatible with non-convulsive epilepsy (confusion and muscle jerks) that were not attributed to cefepime-toxicity until plasma levels were disclosed to the caretakers and symptoms resolved promptly after drug arrest. CONCLUSIONS: These empirical results confirm the suspected risks of hidden side-effects and inappropriate PK/PD parameters (for pathogens with upper-limit MICs) in a population of ICU adult patients. Moreover, it identifies a safety and efficacy window for cefepime doses of 2 g every 12 hours in patients with a CLCr >or= 50 ml/minute infected by pathogens with cefepime MICs <or= 4 mg/l. On the other hand, prompt monitoring of cefepime plasma levels should be considered in case of lower CLCr or greater MICs.