140 resultados para Professorial Role
Resumo:
The activity-related energy expenditure mainly depends upon body weight, the type, intensity and duration of the exercise as well as the mechanical efficiency with which the subjects perform the work. Controversy still exist about the role of hypoactivity in the aetiology of obesity both in adolescence and adulthood. A number of experimental studies based on indirect assessment of physical activity (such as pedometers, accelerometers, cinematography and heart rate) have demonstrated a significant reduction in spontaneous physical activity in certain obese groups as compared to lean matched controls. On the other hand, direct measurements of energy expenditure (by indirect calorimetry) have shown a linear relationship between body weight and 24-hour (or activity-related) energy expenditure. It therefore appears that despite the greater placidity characterising some grossly obese subjects, the absolute rate of energy expenditure - particularly in weight bearing activities - is not lower than in lean subjects, since the hypoactivity does not fully compensate for the greater gross energy cost of a given activity.
Resumo:
Proline- and acid-rich (PAR) basic region leucine zipper (bZIP) proteins thyrotroph embryonic factor (TEF), D-site-binding protein (DBP), and hepatic leukemia factor have been involved in neurotransmitter homeostasis and amino acid metabolism. Here we demonstrate a novel role for these proteins in the transcriptional control of a BH3-only gene. PAR bZIP proteins are able to transactivate the promoter of bcl-gS. This promoter is particularly responsive to TEF activation and is silenced by NFIL3, a repressor that shares the consensus binding site with PAR bZIP proteins. Consistently, transfection of TEF induces the expression of endogenous bcl-gS in cancer cells, and this induction is independent of p53. A naturally occurring variant of DBP (tDBP), lacking the transactivation domain, has been identified and shown to impede the formation of active TEF dimers in a competitive manner and to reduce the TEF-dependent induction of bcl-gS. Of note, treatment of cancer cells with etoposide induces TEF activation and promotes the expression of bcl-gS. Furthermore, blockade of bcl-gS or TEF expression by a small interfering RNA strategy or transfection with tDBP significantly reduces the etoposide-mediated apoptotic cell death. These findings represent the first described role for PAR bZIP proteins in the regulation of a gene involved in the execution of apoptosis.
Resumo:
We have examined the effects of two agents depleting the intracellular pool of glutathione (GSH) on macrophage activation induced by IFN-gamma + LPS, as measured by nitrite production and leishmanicidal activity. Diethylmaleate (DEM), which depletes intracellular GSH by conjugation via a reaction catalyzed by the GSH-S-transferase, strongly inhibited nitrite secretion and leishmanicidal activity when added before or at the time of addition of IFN-gamma + LPS; this inhibition was progressively lost when addition of DEM was delayed up to 10 hr. A close correlation was observed between levels of intracellular soluble GSH during activation and nitrite secretion. Inhibition was partially reversed by the addition of glutathione ethyl ester (GSH-Et). Buthionine sulfoximine (BSO), a specific inhibitor of gamma-glutamylcysteine synthetase, also inhibited macrophage activation, although to a lesser extent than DEM despite a more pronounced soluble GSH depletion. This inhibition was completely reversed by the addition of GSH-Et. DEM and BSO did not alter cell viability or PMA-triggered O2- production by activated macrophages, suggesting that the inhibitory effects observed on nitrite secretion and leishmanicidal activity were not related to a general impairment of macrophage function. DEM and BSO treatment reduced iNOS specific activity and iNOS protein in cytosolic extracts. DEM also decreased iNOS mRNA expression while BSO had no effect. Although commonly used as a GSH-depleting agent, DEM may have additional effects because it can also act as a sulhydryl reagent; BSO, on the other hand, which depletes GSH by enzymatic inhibition, has no effect on protein-bound GSH. Our results suggest that both soluble and protein-bound GSH may be important for the induction of NO synthase in IFN-gamma + LPS-activated macrophages.
Resumo:
Previous reports from our group have established that the fetal ovine gamma globin chain (Hbgamma) and LPS can synergize in the induction of pro-inflammatory cytokines, especially TNFalpha, from mouse and human leukocytes. A fetal sheep liver extract (FSLE) which was observed to have marked immunoregulatory properties in vivo and in vitro had independently been observed to contain significant amounts of each of these molecules. However, the biological activity of this extract (hereafter FSLE) was not explained solely by its content of Hbgamma and LPS, and independent analysis confirmed also the presence of migration inhibitory factor, MIF, and glutathione in FSLE. We have investigated whether MIF and the cellular anti-oxidant glutathione can further synergize with Hbgamma and LPS in TNFalpha induction from human cells in vitro, and mouse cells activated in vivo/in vitro. Our data show that indeed there is evidence for such a synergy. Treatment or mouse cells with FSLE produced an enhanced TNFalpha production which could be inhibited independently both by anti-Hbgamma and by anti-MIF, and optimally by a combination of these reagents.
Resumo:
There has been an ardent interest in herbivore saliva due to its roles in inducing plant defenses and its impact on herbivore fitness. Two techniques are described that inhibit the secretion of labial saliva from the caterpillar, Helicoverpa zea, during feeding. The methods rely on cauterizing the caterpillar's spinneret, the principal secretory structure of the labial glands, or surgically removing the labial salivary gland. Both methods successfully inhibit secretion of saliva and the principal salivary enzyme glucose oxidase. Caterpillars with inhibited saliva production feed at similar rates as the untreated caterpillars, pupate, and emerge as adults. Glucose oxidase has been suggested to increase the caterpillar's survival through the suppression of inducible anti-herbivore defenses in plants. Tobacco (Nicotiana tabacum) leaves fed on by caterpillars with ablated salivary glands had significantly higher levels of nicotine, an inducible anti-herbivore defense compound of tobacco, than leaves fed upon by caterpillars with intact labial salivary glands. Tomato (Lycopersicon esculentum) leaves fed upon by caterpillars with suppressed salivary secretions showed greatly reduced evidence of hydrogen peroxide formation compared to leaves fed upon by intact caterpillars. These two methods are useful techniques for determining the role that saliva plays in manipulating plant anti-herbivore defenses.
Resumo:
AIMS/HYPOTHESIS: betaTC-tet (H2(k)) is a conditional insulinoma cell line derived from transgenic mice expressing a tetracycline-regulated oncogene. Transgenic expression of several proteins implicated in the apoptotic pathways increase the resistance of betaTC-tet cells in vitro. We tested in vivo the sensitivity of the cells to rejection and the protective effect of genetic alterations in NOD mice. METHODS: betaTC-tet cells and genetically engineered lines expressing Bcl-2 (CDM3D), a dominant negative mutant of MyD88 or SOCS-1 were transplanted in diabetic female NOD mice or in male NOD mice with diabetes induced by high-dose streptozotocin. Survival of functional cell grafts in NOD-scid mice was also analyzed after transfer of splenocytes from diabetic NOD mice. Autoreactive T-cell hybridomas and splenocytes from diabetic NOD mice were stimulated by betaTC-tet cells. RESULTS: betaTC-tet cells and genetically engineered cell lines were all similarly rejected in diabetic NOD mice and in NOD-scid mice after splenocyte transfer. In 3- to 6-week-old male NOD mice treated with high-dose streptozotocin, the cells temporarily survived, in contrast with C57BL/6 mice treated with high-dose streptozotocin (indefinite survival) and untreated 3- to 6-week-old male NOD mice (rejection). The protective effect of high-dose streptozotocin was lost in older male NOD mice. betaTC-tet cells did not stimulate autoreactive T-cell hybridomas, but induced IL-2 secretion by splenocytes from diabetic NOD mice. CONCLUSION/INTERPRETATION: The autoimmune process seems to play an important role in the destruction of betaTC-tet cells in NOD mice. Genetic manipulations intended at increasing the resistance of beta cells were inefficient. Similar approaches should be tested in vivo as well as in vitro. High dose streptozotocin influences immune rejection and should be used with caution.
Resumo:
The specific sensitization of tumor cells to the apoptotic response induced by genotoxins is a promising way of increasing the efficacy of chemotherapies. The RasGAP-derived fragment N2, while not regulating apoptosis in normal cells, potently sensitizes tumor cells to cisplatin- and other genotoxin-induced cell death. Here we show that fragment N2 in living cells is mainly located in the cytoplasm and only minimally associated with specific organelles. The cytoplasmic localization of fragment N2 was required for its cisplatin-sensitization property because targeting it to the mitochondria or the ER abrogated its ability to increase the death of tumor cells in response to cisplatin. These results indicate that fragment N2 requires a spatially constrained cellular location to exert its anti-cancer activity.
Resumo:
Malnutrition is common in critically ill, hospitalized patients and so represents a major problem for intensive care. Nutritional support can be beneficial in such cases and may help preserve vital organ and immune function. Energy requirements, route of delivery and potential complications of nutritional support are discussed in this paper.
Resumo:
The complexity of the signaling network that underlies astrocyte-synapse interactions may seem discouraging when tackled from a theoretical perspective. Computational modeling is challenged by the fact that many details remain hitherto unknown and conventional approaches to describe synaptic function are unsuitable to explain experimental observations when astrocytic signaling is taken into account. Supported by experimental evidence is the possibility that astrocytes perform genuine information processing by means of their calcium signaling and are players in the physiological setting of the basal tone of synaptic transmission. Here we consider the plausibility of this scenario from a theoretical perspective, focusing on the modulation of synaptic release probability by the astrocyte and its implications on synaptic plasticity. The analysis of the signaling pathways underlying such modulation refines our notion of tripartite synapse and has profound implications on our understanding of brain function.
Resumo:
Fibroblast growth factor (FGF) signaling is critical for a broad range of developmental processes. In 2003, Fibroblast growth factor receptor 1 (FGFR1) was discovered as a novel locus causing both forms of isolate GnRH Deficiency, Kallmann syndrome [KS with anosmia] and normosmic idiopathic hypogonadotropic hypogonadism [nIHH] eventually accounting for approximately 10% of gonadotropin-releasing hormone (GnRH) deficiency cases. Such cases are characterized by a broad spectrum of reproductive phenotypes from severe congenital forms of GnRH deficiency to reversal of HH. Additionally, the variable expressivity of both reproductive and non-reproductive phenotypes among patients and family members harboring the identical FGFR1 mutations has pointed to a more complex, oligogenic model for GnRH deficiency. Further, reversal of HH in patients carrying FGFR1 mutations suggests potential gene-environment interactions in human GnRH deficiency disorders.