157 resultados para PANCREATIC LESION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we evaluated the effect of leptin on glucose-induced insulin secretion by normal rat pancreatic islets. We show in perifusion experiments that leptin had no acute effect on the secretory activity of beta-cells. However, following preexposure to leptin a pronounced time- and dose-dependent inhibition of both first and second phases of secretion was observed. Maximum inhibition was obtained at 24 h and with 100 nM leptin. This inhibition did not involve a decrease in cellular insulin content. It was also not observed with islets from fa/fa rats. Leptin thus inhibits insulin secretion by a mechanism which requires long-term preexposure to the hormone and which may involve alteration in beta-cell gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulin controls glucose homeostasis by regulating glucose use in peripheral tissues, and its own production and secretion in pancreatic beta cells. These responses are largely mediated downstream of the insulin receptor substrates, IRS-1 and IRS-2 (refs 4-8), through distinct signalling pathways. Although a number of effectors of these pathways have been identified, their roles in mediating glucose homeostasis are poorly defined. Here we show that mice deficient for S6 kinase 1, an effector of the phosphatidylinositide-3-OH kinase signalling pathway, are hypoinsulinaemic and glucose intolerant. Whereas insulin resistance is not observed in isolated muscle, such mice exhibit a sharp reduction in glucose-induced insulin secretion and in pancreatic insulin content. This is not due to a lesion in glucose sensing or insulin production, but to a reduction in pancreatic endocrine mass, which is accounted for by a selective decrease in beta-cell size. The observed phenotype closely parallels those of preclinical type 2 diabetes mellitus, in which malnutrition-induced hypoinsulinaemia predisposes individuals to glucose intolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: As no curative treatment for advanced pancreatic and biliary cancer with malignant ascites exists, new modalities possibly improving the response to available chemotherapies must be explored. This phase I study assesses the feasibility, tolerability and pharmacokinetics of a regional treatment of gemcitabine administered in escalating doses by the stop-flow approach to patients with advanced abdominal malignancies (adenocarcinoma of the pancreas, n = 8, and cholangiocarcinoma of the liver, n = 1). EXPERIMENTAL DESIGN: Gemcitabine at 500, 750 and 1,125 mg/m(2) was administered to three patients at each dose level by loco-regional chemotherapy, using hypoxic abdominal stop-flow perfusion. This was achieved by an aorto-caval occlusion by balloon catheters connected to an extracorporeal circuit. Gemcitabine and its main metabolite 2',2'-difluorodeoxyuridine (dFdU) concentrations were measured by high performance liquid chromatography with UV detection in the extracorporeal circuit during the 20 min of stop-flow perfusion, and in peripheral plasma for 420 min. Blood gases were monitored during the stop-flow perfusion and hypoxia was considered stringent if two of the following endpoints were met: pH </= 7.2, pO(2) nadir ratio </=0.70 or pCO(2) peak ratio >/=1.35. The tolerability of this procedure was also assessed. RESULTS: Stringent hypoxia was achieved in four patients. Very high levels of gemcitabine were rapidly reached in the extracorporeal circuit during the 20 min of stop-flow perfusion, with C (max) levels in the abdominal circuit of 246 (+/-37%), 2,039 (+/-77%) and 4,780 (+/-7.3%) mug/ml for the three dose levels 500, 750 and 1,125 mg/m(2), respectively. These C (max) were between 13 (+/-51%) and 290 (+/-12%) times higher than those measured in the peripheral plasma. Similarly, the abdominal exposure to gemcitabine, calculated as AUC(t0-20), was between 5.5 (+/-43%) and 200 (+/-66%)-fold higher than the systemic exposure. Loco-regional exposure to gemcitabine was statistically higher in presence of stringent hypoxia (P < 0.01 for C (max) and AUC(t0-20), both normalised to the gemcitabine dose). Toxicities were acceptable considering the complexity of the procedure and were mostly hepatic; it was not possible to differentiate the respective contributions of systemic and regional exposures. A significant correlation (P < 0.05) was found between systemic C (max) of gemcitabine and the nadir of both leucocytes and neutrophils. CONCLUSIONS: Regional exposure to gemcitabine-the current standard drug for advanced adenocarcinoma of the pancreas-can be markedly enhanced using an optimised hypoxic stop-flow perfusion technique, with acceptable toxicities up to a dose of 1,125 mg/m(2). However, the activity of gemcitabine under hypoxic conditions is not as firmly established as that of other drugs such as mitomycin C, melphalan or tirapazamine. Further studies of this investigational modality, but with bioreductive drugs, are therefore warranted first to evaluate the tolerance in a phase I study and later on to assess whether it does improve the response to chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Engraftment of primary pancreas ductal adenocarcinomas (PDAC) in mice to generate patient-derived xenograft (PDX) models is a promising platform for biological and therapeutic studies in this disease. However, these models are still incompletely characterized. Here, we measured the impact of the murine tumor environment on the gene expression of the engrafted human tumoral cells. METHODS: We have analyzed gene expression profiles from 35 new PDX models and compared them with previously published microarray data of 18 PDX models, 53 primary tumors and 41 cell lines from PDAC. The results obtained in the PDAC system were further compared with public available microarray data from 42 PDX models, 108 primary tumors and 32 cell lines from hepatocellular carcinoma (HCC). We developed a robust analysis protocol to explore the gene expression space. In addition, we completed the analysis with a functional characterization of PDX models, including if changes were caused by murine environment or by serial passing. RESULTS: Our results showed that PDX models derived from PDAC, or HCC, were clearly different to the cell lines derived from the same cancer tissues. Indeed, PDAC- and HCC-derived cell lines are indistinguishable from each other based on their gene expression profiles. In contrast, the transcriptomes of PDAC and HCC PDX models can be separated into two different groups that share some partial similarity with their corresponding original primary tumors. Our results point to the lack of human stromal involvement in PDXs as a major factor contributing to their differences from the original primary tumors. The main functional differences between pancreatic PDX models and human PDAC are the lower expression of genes involved in pathways related to extracellular matrix and hemostasis and the up- regulation of cell cycle genes. Importantly, most of these differences are detected in the first passages after the tumor engraftment. CONCLUSIONS: Our results suggest that PDX models of PDAC and HCC retain, to some extent, a gene expression memory of the original primary tumors, while this pattern is not detected in conventional cancer cell lines. Expression changes in PDXs are mainly related to pathways reflecting the lack of human infiltrating cells and the adaptation to a new environment. We also provide evidence of the stability of gene expression patterns over subsequent passages, indicating early phases of the adaptation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Pancreatic beta-cells exposed to proinflammatory cytokines display alterations in gene expression resulting in defective insulin secretion and apoptosis. MicroRNAs are small noncoding RNAs emerging as key regulators of gene expression. Here, we evaluated the contribution of microRNAs to cytokine-mediated beta-cell cytotoxicity. RESEARCH DESIGN AND METHODS: We used global microarray profiling and real-time PCR analysis to detect changes in microRNA expression in beta-cells exposed to cytokines and in islets of pre-diabetic NOD mice. We assessed the involvement of the microRNAs affected in cytokine-mediated beta-cell failure by modifying their expression in insulin-secreting MIN6 cells. RESULTS: We found that IL-1beta and TNF-alpha induce the expression of miR-21, miR-34a, and miR-146a both in MIN6 cells and human pancreatic islets. We further show an increase of these microRNAs in islets of NOD mice during development of pre-diabetic insulitis. Blocking miR-21, miR-34a, or miR-146a function using antisense molecules did not restore insulin-promoter activity but prevented the reduction in glucose-induced insulin secretion observed upon IL-1beta exposure. Moreover, anti-miR-34a and anti-miR-146a treatment protected MIN6 cells from cytokine-triggered cell death. CONCLUSIONS: Our data identify miR-21, miR-34a, and miR-146a as novel players in beta-cell failure elicited in vitro and in vivo by proinflammatory cytokines, notably during the development of peri-insulitis that precedes overt diabetes in NOD mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMPORTANCE OF THE FIELD: With some 220,000 new cases/year in the world, pancreatic adenocarcinoma is the fourth highest cause of death by cancers. Among newly diagnosed patients about 210,000 will die within 9 months following diagnosis. Therefore, effective adjuncts to current treatment strategies are necessary. Because embryological signaling pathways are upregulated in pancreatic adenocarcinoma, they represent potential targets for future therapies. AREAS COVERED IN THIS REVIEW: Our aim is to present the Notch pathway, and to describe its involvement in pancreatic pathophysiology/carcinogenesis. This pathway appeared as a prime target for pancreatic cancer therapy. In the light of the crosstalk of Notch with other survival/embryologic pathways, drugs affecting more than one pathway may have to be combined. WHAT THE READER WILL GAIN: Drugs against gamma-secretases could thus serve in cancer treatment and can be combined with drugs targeting survival pathways interplaying with Notch such as Hedgehog. TAKE HOME MESSAGE: Downregulation of Notch contributes to the inhibition and apoptosis of pancreatic cancer cells whereas Hedgehog inhibition will allow for enhanced delivery of drugs to the tumor. Both pathway inhibitors appear to have synergistic effects for future therapeutics for pancreatic adenocarcinoma, once safety issues of compounds are overcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early epilepsy is known to worsen the developmental prognosis of young children with a congenital focal brain lesion, but its direct role is often very difficult to delineate from the other variables. This requires prolonged periods of follow-up with simultaneous serial electrophysiological and developmental assessments which are rarely obtained. We studied a male infant with a right prenatal infarct in the territory of the right middle cerebral artery resulting in a left spastic hemiparesis, and an epileptic disorder (infantile spasms with transient right hemihypsarrhythmia and focal seizures) from the age of 7 months until the age of 4 years. Pregnancy and delivery were normal. A dissociated delay of early language acquisition affecting mainly comprehension without any autistic features was documented. This delay was much more severe than usually expected in children with early focal lesions, and its evolution, with catch-up to normal, was correlated with the active phase of the epilepsy. We postulate that the epilepsy specifically amplified a pattern of delayed language emergence, mainly affecting lexical comprehension, reported in children with early right hemisphere damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuronal-specific protein complexin I (CPX I) plays an important role in controlling the Ca(2+)-dependent neurotransmitter release. Since insulin exocytosis and neurotransmitter release rely on similar molecular mechanisms and that pancreatic beta-cells and neuronal cells share the expression of many restricted genes, we investigated the potential role of CPX I in insulin-secreting cells. We found that pancreatic islets and several insulin-secreting cell lines express high levels of CPX I. The beta-cell expression of CPX I is mediated by the presence of a neuron restrictive silencer element located within the regulatory region of the gene. This element bound the transcriptional repressor REST, which is found in most cell types with the exception of mature neuronal cells and beta-cells. Overexpression of CPX I or silencing of the CPX I gene (Cplx1) by RNA interference led to strong impairment in beta-cell secretion in response to nutrients such as glucose, leucine and KCl. This effect was detected both in the early and the sustained secretory phases but was much more pronounced in the early phase. We conclude that CPX I plays a critical role in beta-cells in the control of the stimulated-exocytosis of insulin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review assesses the presentation, management, and outcome of delayed postpancreatectomy hemorrhage (PPH) and suggests a novel algorithm as possible standard of care.An electronic search of Medline and Embase databases from January 1990 to February 2010 was undertaken. A random-effect meta-analysis for success rate and mortality of laparotomy vs. interventional radiology after delayed PPH was performed.Fifteen studies comprising of 248 patients with delayed PPH were included. Its incidence was of 3.3%. A sentinel bleed heralding a delayed PPH was observed in 45% of cases. Pancreatic leaks or intraabdominal abscesses were found in 62%. Interventional radiology was attempted in 41%, and laparotomy was undertaken in 49%. On meta-analysis comparing laparotomy vs. interventional radiology, no significant difference could be found in terms of complete hemostasis (76% vs. 80%; P = 0.35). A statistically significant difference favored interventional radiology vs. laparotomy in term of mortality (22% vs. 47%; P = 0.02).Proper management of postoperative complications, such as pancreatic leak and intraabdominal abscess, minimizes the risk of delayed PPH. Sentinel bleeding needs to be thoroughly investigated. If a pseudoaneurysm is detected, it has to be treated by interventional angiography, in order to prevent a further delayed PPH. Early angiography and embolization or stenting is safe and should be the procedure of choice. Surgery remains a therapeutic option if no interventional radiology is available, or patients cannot be resuscitated for an interventional treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Laparoscopic enucleation for neuroendocrine pancreatic tumors has become a feasible technique, with a reported incidence of pancreatic fistula ranging from 13 to 29 %.1 (-) 3 This report describes the first successful case of laparoscopic pancreatic enucleation with resection of the main pancreatic duct followed by end-to-end anastomosis. METHODS: A 41-year-old woman was admitted to the authors' hospital for repeated syncope. Hypoglycemia also was noted. A contrast-enhanced computed tomography examination showed a highly enhanced tumor measuring 22 mm in diameter on the ventral side of the pancreatic body adjacent to the main pancreatic duct. The patient's blood insulin level was elevated, and her diagnosis was determined to be pancreatic insulinoma. Laparoscopic pancreatic enucleation was performed. Approximately 2 cm of the main pancreatic duct was segmentally resected, and a short stent (Silicone tube: Silastic, Dow Corning Corporation, Midland, MI) was inserted. The direct anastomosis of the main pancreatic duct was performed using four separate sutures with an absorbable monofilament (6-0 PDS). RESULTS: The operation time was 166 min, and the estimated blood loss was 100 mL. The postoperative course was uneventful, and the patient was discharged from hospital on postoperative day 7. The pathologic findings showed a well-differentiated insulinoma and a negative surgical margin. A computed tomography examination performed 1 month after the operation showed a successful anastomosis with a patent main pancreatic duct. CONCLUSIONS: Laparoscopic segmental resection of the main pancreatic duct and end-to-end anastomosis can be performed safely with the insertion of a short stent. This technique also can be used for a central pancreatectomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rat pancreatic alpha- and beta-cells are critically dependent on hormonal signals generating cyclic AMP (cAMP) as a synergistic messenger for nutrient-induced hormone release. Several peptides of the glucagon-secretin family have been proposed as physiological ligands for cAMP production in beta-cells, but their relative importance for islet function is still unknown. The present study shows expression at the RNA level in beta-cells of receptors for glucagon, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide I(7-36) amide (GLP-I), while RNA from islet alpha-cells hybridized only with GIP receptor cDNA. Western blots confirmed that GLP-I receptors were expressed in beta-cells and not in alpha-cells. Receptor activity, measured as cellular cAMP production after exposing islet beta-cells for 15 min to a range of peptide concentrations, was already detected using 10 pmol/l GLP-I and 50 pmol/l GIP but required 1 nmol/l glucagon. EC50 values of GLP-I- and GIP-induced cAMP formation were comparable (0.2 nmol/l) and 45-fold lower than the EC50 of glucagon (9 nmol/l). Maximal stimulation of cAMP production was comparable for the three peptides. In purified alpha-cells, 1 nmol/l GLP-I failed to increase cAMP levels, while 10 pmol/l to 10 nmol/l GIP exerted similar stimulatory effects as in beta-cells. In conclusion, these data show that stimulation of glucagon, GLP-I, and GIP receptors in rat beta-cells causes cAMP production required for insulin release, while adenylate cyclase in alpha-cells is positively regulated by GIP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of variations in blood glucose concentrations by pancreatic beta-cells and a subsequent appropriate secretion of insulin are key events in the control of glucose homeostasis. Because a decreased capability to sense glycemic changes is a hallmark of type 2 diabetes, the glucose signalling pathway leading to insulin secretion in pancreatic beta-cells has been extensively studied. This signalling mechanism depends on glucose metabolism and requires the presence of specific molecules such as GLUT2, glucokinase and the K(ATP) channel subunits Kir6.2 and SUR1. Other cells are also able to sense variations in glycemia or in local glucose concentrations and to modulate different physiological functions participating in the general control of glucose and energy homeostasis. These include cells forming the hepatoportal vein glucose sensor, which controls glucose storage in the liver, counterregulation, food intake and glucose utilization by peripheral tissues and neurons in the hypothalamus and brainstem whose firing rates are modulated by local variations in glucose concentrations or, when not protected by a blood-brain barrier, directly by changes in blood glucose levels. These glucose-sensing neurons are involved in the control of insulin and glucagon secretion, food intake and energy expenditure. Here, recent physiological studies performed with GLUT2-/- mice will be described, which indicate that this transporter is essential for glucose sensing by pancreatic beta-cells, by the hepatoportal sensor and by sensors, probably located centrally, which control activity of the autonomic nervous system and stimulate glucagon secretion. These studies may pave the way to a fine dissection of the molecular and cellular components of extra-pancreatic glucose sensors involved in the control of glucose and energy homeostasis.