176 resultados para Network re-configuration
Resumo:
Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.
Resumo:
The regulation of the immune system is controlled by many cell surface receptors. A prominent representative is the 'molecular switch' HVEM (herpes virus entry mediator) that can activate either proinflammatory or inhibitory signaling pathways. HVEM ligands belong to two distinct families: the TNF-related cytokines LIGHT and lymphotoxin-α, and the Ig-related membrane proteins BTLA and CD160. HVEM and its ligands have been involved in the pathogenesis of various autoimmune and inflammatory diseases, but recent reports indicate that this network may also be involved in tumor progression and resistance to immune response. Here we summarize the recent advances made regarding the knowledge on HVEM and its ligands in cancer cells, and their potential roles in tumor progression and escape to immune responses. Blockade or enhancement of these pathways may help improving cancer therapy.
Resumo:
Substance user adolescents were asked to report on each contact they had had with any type of care providers since they had begun to use alcohol or illegal drugs regularly. Primary care doctors and social workers represent the main access to the care network. In one out of two contacts substance use was not discussed.
Resumo:
Melanoma is the cancer with the fastest incidence increase in Switzerland. 30% of the cases arise before the age of 50 years. Once metastatic, the median survival under current systemic therapies is about 8 months, with less than 5% of patients alive at 5 years. Many efforts in the understanding of cellular biology, intracellular signaling pathways, as well as the role of cellular immunity have been made in the recent years. This has resulted in the development of novel and very promising therapies. In this review, we will cover the results obtained with targeted therapies such as "tyrosin kinase inhibitors" (TKI), as well as those obtained with a monoclonal antibody directed against the CTLA-4 receptor of lymphocytes.
Resumo:
Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.
Resumo:
Inhibitory control refers to the ability to suppress planned or ongoing cognitive or motor processes. Electrophysiological indices of inhibitory control failure have been found to manifest even before the presentation of the stimuli triggering the inhibition, suggesting that pre-stimulus brain-states modulate inhibition performance. However, previous electrophysiological investigations on the state-dependency of inhibitory control were based on averaged event-related potentials (ERPs), a method eliminating the variability in the ongoing brain activity not time-locked to the event of interest. These studies thus left unresolved whether spontaneous variations in the brain-state immediately preceding unpredictable inhibition-triggering stimuli also influence inhibitory control performance. To address this question, we applied single-trial EEG topographic analyses on the time interval immediately preceding NoGo stimuli in conditions where the responses to NoGo trials were correctly inhibited [correct rejection (CR)] vs. committed [false alarms (FAs)] during an auditory spatial Go/NoGo task. We found a specific configuration of the EEG voltage field manifesting more frequently before correctly inhibited responses to NoGo stimuli than before FAs. There was no evidence for an EEG topography occurring more frequently before FAs than before CR. The visualization of distributed electrical source estimations of the EEG topography preceding successful response inhibition suggested that it resulted from the activity of a right fronto-parietal brain network. Our results suggest that the fluctuations in the ongoing brain activity immediately preceding stimulus presentation contribute to the behavioral outcomes during an inhibitory control task. Our results further suggest that the state-dependency of sensory-cognitive processing might not only concern perceptual processes, but also high-order, top-down inhibitory control mechanisms.
Resumo:
In this paper we analyse the decline of the Swiss corporate network between 1980 and 2000. We address the theoretical and methodological challenge of this transformation by the use of a combination of network analysis and multiple correspondence analysis (MCA). Based on a sample of top managers of the 110 largest Swiss companies in 1980 and 2000 we show that, beyond an adjustment to structural pressure, an explanation of the decline of the network has to include the strategies of the fractions of the business elites. We reveal that three factors contribute crucially to the decline of the Swiss corporate network: the managerialization of industrial leaders, the marginalization of law degree holders and the influx of hardly connected foreign managers.
Resumo:
The aim of this study was to describe the clinical and PSG characteristics of narcolepsy with cataplexy and their genetic predisposition by using the retrospective patient database of the European Narcolepsy Network (EU-NN). We have analysed retrospective data of 1099 patients with narcolepsy diagnosed according to International Classification of Sleep Disorders-2. Demographic and clinical characteristics, polysomnography and multiple sleep latency test data, hypocretin-1 levels, and genome-wide genotypes were available. We found a significantly lower age at sleepiness onset (men versus women: 23.74 ± 12.43 versus 21.49 ± 11.83, P = 0.003) and longer diagnostic delay in women (men versus women: 13.82 ± 13.79 versus 15.62 ± 14.94, P = 0.044). The mean diagnostic delay was 14.63 ± 14.31 years, and longer delay was associated with higher body mass index. The best predictors of short diagnostic delay were young age at diagnosis, cataplexy as the first symptom and higher frequency of cataplexy attacks. The mean multiple sleep latency negatively correlated with Epworth Sleepiness Scale (ESS) and with the number of sleep-onset rapid eye movement periods (SOREMPs), but none of the polysomnographic variables was associated with subjective or objective measures of sleepiness. Variant rs2859998 in UBXN2B gene showed a strong association (P = 1.28E-07) with the age at onset of excessive daytime sleepiness, and rs12425451 near the transcription factor TEAD4 (P = 1.97E-07) with the age at onset of cataplexy. Altogether, our results indicate that the diagnostic delay remains extremely long, age and gender substantially affect symptoms, and that a genetic predisposition affects the age at onset of symptoms.
Resumo:
Background Folate deficiency leads to DNA damage and inadequate repair, caused by a decreased synthesis of thymidylate and purines. We analyzed the relationship between dietary folate intake and the risk of several cancers. Patients and methods The study is based on a network of case-control studies conducted in Italy and Switzerland in 1991-2009. The odds ratios (ORs) for dietary folate intake were estimated by multiple logistic regression models, adjusted for major identified confounding factors. Results For a few cancer sites, we found a significant inverse relation, with ORs for an increment of 100 μg/day of dietary folate of 0.65 for oropharyngeal (1467 cases), 0.58 for esophageal (505 cases), 0.83 for colorectal (2390 cases), 0.72 for pancreatic (326 cases), 0.67 for laryngeal (851 cases) and 0.87 for breast (3034 cases) cancers. The risk estimates were below unity, although not significantly, for cancers of the endometrium (OR = 0.87, 454 cases), ovary (OR = 0.86, 1031 cases), prostate (OR = 0.91, 1468 cases) and kidney (OR = 0.88, 767 cases), and was 1.00 for stomach cancer (230 cases). No material heterogeneity was found in strata of sex, age, smoking and alcohol drinking. Conclusions Our data support a real inverse association of dietary folate intake with the risk of several common cancers.
Resumo:
Diabetes has been associated to the risk of a few cancer sites, though quantification of this association in various populations remains open to discussion. We analyzed the relation between diabetes and the risk of various cancers in an integrated series of case-control studies conducted in Italy and Switzerland between 1991 and 2009. The studies included 1,468 oral and pharyngeal, 505 esophageal, 230 gastric, 2,390 colorectal, 185 liver, 326 pancreatic, 852 laryngeal, 3,034 breast, 607 endometrial, 1,031 ovarian, 1,294 prostate, and 767 renal cell cancer cases and 12,060 hospital controls. The multivariate odds ratios (OR) for subjects with diabetes as compared to those without-adjusted for major identified confounding factors for the cancers considered through logistic regression models-were significantly elevated for cancers of the oral cavity/pharynx (OR = 1.58), esophagus (OR = 2.52), colorectum (OR = 1.23), liver (OR = 3.52), pancreas (OR = 3.32), postmenopausal breast (OR = 1.76), and endometrium (OR = 1.70). For cancers of the oral cavity, esophagus, colorectum, liver, and postmenopausal breast, the excess risk persisted over 10 yr since diagnosis of diabetes. Our data confirm and further quantify the association of diabetes with colorectal, liver, pancreatic, postmenopausal breast, and endometrial cancer and suggest forthe first time that diabetes may also increase the risk of oral/pharyngeal and esophageal cancer. [Table: see text] [Table: see text].
Resumo:
Constitutive activation of the nuclear factor-κ B (NF-κB) pathway is a hallmark of the activated B-cell-like (ABC) subtype of diffuse large B-cell lymphoma (DLBCL). Recurrent mutations of NF-κB regulators that cause constitutive activity of this oncogenic pathway have been identified. However, it remains unclear how specific target genes are regulated. We identified the atypical nuclear IκB protein IκB-ζ to be upregulated in ABC compared with germinal center B-cell-like (GCB) DLBCL primary patient samples. Knockdown of IκB-ζ by RNA interference was toxic to ABC but not to GCB DLBCL cell lines. Gene expression profiling after IκB-ζ knockdown demonstrated a significant downregulation of a large number of known NF-κB target genes, indicating an essential role of IκB-ζ in regulating a specific set of NF-κB target genes. To further investigate how IκB-ζ mediates NF-κB activity, we performed immunoprecipitations and detected a physical interaction of IκB-ζ with both p50 and p52 NF-κB subunits, indicating that IκB-ζ interacts with components of both the canonical and the noncanonical NF-κB pathway in ABC DLBCL. Collectively, our data demonstrate that IκB-ζ is essential for nuclear NF-κB activity in ABC DLBCL, and thus might represent a promising molecular target for future therapies.