171 resultados para Motor nerve conduction velocity
Resumo:
We investigated procedural learning in 18 children with basal ganglia (BG) lesions or dysfunctions of various aetiologies, using a visuo-motor learning test, the Serial Reaction Time (SRT) task, and a cognitive learning test, the Probabilistic Classification Learning (PCL) task. We compared patients with early (<1 year old, n=9), later onset (>6 years old, n=7) or progressive disorder (idiopathic dystonia, n=2). All patients showed deficits in both visuo-motor and cognitive domains, except those with idiopathic dystonia, who displayed preserved classification learning skills. Impairments seem to be independent from the age of onset of pathology. As far as we know, this study is the first to investigate motor and cognitive procedural learning in children with BG damage. Procedural impairments were documented whatever the aetiology of the BG damage/dysfunction and time of pathology onset, thus supporting the claim of very early skill learning development and lack of plasticity in case of damage.
Resumo:
BACKGROUND: The ideal local anesthetic regime for femoral nerve block that balances analgesia with mobility after total knee arthroplasty (TKA) remains undefined. QUESTIONS/PURPOSES: We compared two volumes and concentrations of a fixed dose of ropivacaine for continuous femoral nerve block after TKA to a single injection femoral nerve block with ropivacaine to determine (1) time to discharge readiness; (2) early pain scores and analgesic consumption; and (3) functional outcomes, including range of motion and WOMAC scores at the time of recovery. METHODS: Ninety-nine patients were allocated to one of three continuous femoral nerve block groups for this randomized, placebo-controlled, double-blind trial: a high concentration group (ropivacaine 0.2% infusion), a low concentration group (ropivacaine 0.1% infusion), or a placebo infusion group (saline 0.9% infusion). Infusions were discontinued on postoperative Day (POD) 2. The primary outcome was time to discharge readiness. Secondary outcomes included opioid consumption, pain, and functional outcomes. Ninety-three patients completed the study protocol; the study was halted early because of unanticipated changes to pain protocols at the host institution, by which time only 61% of the required number of patients had been enrolled. RESULTS: With the numbers available, the mean time to discharge readiness was not different between groups (high concentration group, 62 hours [95% confidence interval [CI], 51-72 hours]; low concentration group, 73 hours [95% CI, 63-83 hours]; placebo infusion group 65 hours [95% CI, 56-75 hours]; p = 0.27). Patients in the low concentration group consumed significantly less morphine during the period of infusion (POD 1, high concentration group, 56 mg [95% CI, 42-70 mg]; low concentration group, 35 mg [95% CI, 27-43 mg]; placebo infusion group, 48 mg [95% CI, 38-59 mg], p = 0.02; POD 2, high concentration group, 50 mg [95% CI, 41-60 mg]; low concentration group, 33 mg [95% CI, 24-42 mg]; placebo infusion group, 39 mg [95% CI, 30-48 mg], p = 0.04); however, there were no important differences in pain scores or opioid-related side effects with the numbers available. Likewise, there were no important differences in functional outcomes between groups. CONCLUSIONS: Based on this study, which was terminated prematurely before the desired sample size could be achieved, we were unable to demonstrate that varying the concentration and volume of a fixed-dose ropivacaine infusion for continuous femoral nerve block influences time to discharge readiness when compared with a conventional single-injection femoral nerve block after TKA. A low concentration of ropivacaine infusion can reduce postoperative opioid consumption but without any important differences in pain scores, side effects, or functional outcomes. These pilot data may be used to inform the statistical power of future randomized trials. LEVEL OF EVIDENCE: Level II, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Resumo:
Introduction: Motor abilities in schoolchildren have been decreasing in the last two decades (Bös, 2003, Tomkinson et al., 2003). This may be related to the dramatic increase in overweight and adiposity during the same time period. Children of migrant background are especially affected (Lasserre et al., 2007). But little is known about the relationship between BMI and migration background and motor abilities in preschool children. Methods/Design We carried out a cross-sectional analysis with 665 children (age 5.1 ± 0.6 years; 49.8 % female) of 40 randomly selected kindergarten classes from German and French speaking regions in Switzerland with a high migrant background. We investigated BMI, cardiorespiratory fitness (20 m shuttle run), static (displacement of center of pressure (COP)) and dynamic (balancing forward on a beam) postural control and overall fitness (obstacle course). Results: Of the children, 9.6 % were overweight, 10.5 % were obese (Swiss national percentiles) and 72.8 % were of migrant background (at least one parent born outside of Switzerland). Mean BMI from children of non-migrant background was 15.5 ± 1.1 kg/m2, while migrant children had a mean BMI of 15.8 ± 1.7 kg/m2 (p=0.08). Normal-weight children performed better in cardiorespiratory fitness (3.1 ± 1.4 vs. 2.6 ± 1.1 stages, p<0.001), overall fitness (18.9 ± 4.4 vs. 20.8 ± 4.6 sec, p<0.001) and in dynamic balance (4.9 ± 3.5 vs. 3.8 ± 2.5 steps, p<0.001) compared to overweight and obese children, while the latter had less postural sway (COP: 956 ± 302 vs. 1021 ± 212 mm, p=0.008). There was a clear inverse dose-response relationship between weight status and dynamic motor abilities. There were no significant differences in most tested motor abilities between non-migrant and migrant. The latter performed less well in only one motor test (overall fitness: 20.2 ± 5.2 vs. 18.3 ± 3.5 sec, p<0.001). These findings persisted after adjustment for BMI. Conclusion In preschool children, differences in motor abilities are already present between normal weight and overweight/obese children. However, migrant children demonstrate similar motor abilities compared to non-migrant children for almost all tests, despite their slightly higher BMI.
Resumo:
The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model systems.
Resumo:
This study aimed to compare foot plantar pressure distribution while jogging and running in highly trained adolescent runners. Eleven participants performed two constant-velocity running trials either at jogging (11.2 ± 0.9 km/h) or running (17.8 ± 1.4 km/h) pace on a treadmill. Contact area (CA in cm(2)), maximum force (F(max) in N), peak pressure (PP in kPa), contact time (CT in ms), and relative load (force time integral in each individual region divided by the force time integral for the total plantar foot surface, in %) were measured in nine regions of the right foot using an in-shoe plantar pressure device. Under the whole foot, CA, F(max) and PP were lower in jogging than in running (-1.2% [p<0.05], -12.3% [p<0.001] and -15.1% [p<0.01] respectively) whereas CT was higher (+20.1%; p<0.001). Interestingly, we found an increase in relative load under the medial and central forefoot regions while jogging (+6.7% and +3.7%, respectively; [p<0.05]), while the relative load under the lesser toes (-8.4%; p<0.05) was reduced. In order to prevent overloading of the metatarsals in adolescent runners, excessive mileage at jogging pace should be avoided.
Resumo:
Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into adulthood suggest ongoing structural alterations affecting frontostriatal circuits. Using cortical thickness estimation and voxel-based analysis of T1- and diffusion-weighted structural magnetic resonance images, we examined 40 adults with Tourette syndrome in comparison with 40 age- and gender-matched healthy controls. Patients with Tourette syndrome showed relative grey matter volume reduction in orbitofrontal, anterior cingulate and ventrolateral prefrontal cortices bilaterally. Cortical thinning extended into the limbic mesial temporal lobe. The grey matter changes were modulated additionally by the presence of co-morbidities and symptom severity. Prefrontal cortical thickness reduction correlated negatively with tic severity, while volume increase in primary somatosensory cortex depended on the intensity of premonitory sensations. Orbitofrontal cortex volume changes were further associated with abnormal water diffusivity within grey matter. White matter analysis revealed changes in fibre coherence in patients with Tourette syndrome within anterior parts of the corpus callosum. The severity of motor tics and premonitory urges had an impact on the integrity of tracts corresponding to cortico-cortical and cortico-subcortical connections. Our results provide empirical support for a patho-aetiological model of Tourette syndrome based on developmental abnormalities, with perturbation of compensatory systems marking persistence of symptoms into adulthood. We interpret the symptom severity related grey matter volume increase in distinct functional brain areas as evidence of ongoing structural plasticity. The convergence of evidence from volume and water diffusivity imaging strengthens the validity of our findings and attests to the value of a novel multimodal combination of volume and cortical thickness estimations that provides unique and complementary information by exploiting their differential sensitivity to structural change.
Resumo:
A ubiquitous assessment of swimming velocity (main metric of the performance) is essential for the coach to provide a tailored feedback to the trainee. We present a probabilistic framework for the data-driven estimation of the swimming velocity at every cycle using a low-cost wearable inertial measurement unit (IMU). The statistical validation of the method on 15 swimmers shows that an average relative error of 0.1 ± 9.6% and high correlation with the tethered reference system (rX,Y=0.91 ) is achievable. Besides, a simple tool to analyze the influence of sacrum kinematics on the performance is provided.
Resumo:
Ophthalmoplegia associated with dural carotid-cavernous sinus fistula typically involves the third, fourth, and sixth cranial nerves. Occasionally, isolated palsy of the oculomotor or abducens nerve is noted. We report a patient with bilateral dural carotid-cavernous sinus fistulas who presented with an isolated trochlear nerve palsy.
Resumo:
The 24-hour rest-activity pattern and the amount of motor activity was studied in a patient with fatal familial insomnia (FFI) by means of wrist actigraphy. During the study, the patient underwent indirect calorimetry. The 52-day recording showed severe disruption of the 24-hour rest-activity pattern with increased motor activity up to 80%. The 24-hour energy expenditure, assayed in a respiration chamber, was strikingly elevated by 60%. Chronic motor overactivity and loss of circadian rest-activity rhythm may play a role in the progressive metabolic exhaustion leading to death in FFI patients.
Resumo:
The concept that optic nerve fiber loss might be reduced by neuroprotection arose in the mid 1990s. The subsequent research effort, focused mainly on rodent models, has not yet transformed into a successful clinical trial, but provides mechanistic understanding of retinal ganglion cell death and points to potential therapeutic strategies. This review highlights advances made over the last year. In excitotoxicity and axotomy models retinal ganglion cell death has been shown to result from a complex interaction between retinal neurons and Müller glia, which release toxic molecules including tumor necrosis factor alpha. This counteracts neuroprotection by neurotrophins such as nerve growth factor, which bind to p75NTR receptors on Müller glia stimulating the toxic release. Another negative effect against neurotrophin-mediated protection involves the action of LINGO-1 at trkB brain-derived neurotrophic factor (BDNF) receptors, and BDNF neuroprotection is enhanced by an antagonist to LINGO-1. As an alternative to pharmacotherapy, retinal defences can be stimulated by exposure to infrared radiation. The mechanisms involved in glaucoma and other optic nerve disorders are being clarified in rodent models, focusing on retrograde degeneration following axonal damage, excitotoxicity and inflammatory/autoimmune mechanisms. Neuroprotective strategies are being refined in the light of the mechanistic understanding.
Resumo:
The relationship between motor and intellectual functions was examined in 252 healthy children from 7 to 18 years using the Zurich Neuromotor Assessment and standardized intelligence tests. The magnitude of Spearman correlations between neuromotor and intellectual scores was generally weak (r = 0.15-0.37). The strongest correlations were found between performance in the pegboard task and visuomotor intelligence (r = 0.35) and between contralateral associated movements and intelligence in boys (r = 0.37). We conclude that specific connections between motor and intellectual functions may exist. However, because the magnitude of correlations is generally weak, we suggest that motor and intellectual domains in healthy children are largely independent.