266 resultados para MUSCLE DEGENERATION
Resumo:
PURPOSE: Determine the effect of repeated intravitreal injections of ranibizumab (0.5 mg; 0.05 ml) on retrobulbar blood flow velocities (BFVs) using ultrasound imaging quantification in twenty patients with exudative age-related macular degeneration treated for 6 months. METHODS: Visual acuity (ETDRS), central macular thickness (OCT), peak-systolic, end-diastolic and mean-BFVs in central retinal (CRA), temporal posterior ciliary (TPCA) and ophthalmic (OA) arteries were measured before, 2 days, 3 weeks and 6 months after the first injection. Patients were examined monthly and received 1-5 additional injections depending on ophthalmologic examination results. RESULTS: Six months after the first injection, a significant increase in visual acuity 50.9 ± 25.9 versus 44.4 ± 21.7 (p < 0.01) and decrease in mean central macular thickness 267 ± 74 versus 377 ± 115 μm (p < 0.001) were observed compared to baseline. Although mean-BFVs decreased by 16%±3% in CRA and 20%±5% in TPCA (p < 0.001) 2 days after the first injection, no significant change was seen thereafter. Mean-BFVs in OA decreased by 19%±5% at week 3 (p < 0.001). However, the smallest number of injections (two injections) was associated with the longest time interval between the last injection and month 6 (20 weeks) and with the best return to baseline levels for mean-BFVs in CRA, suggesting that ranibizumab had reversible effects on native retinal vascular supply after its discontinuation. Moreover, a significant correlation between the number of injections and percentage of changes in mean-BFVs in CRA was observed at month 6 (R = 0.74, p < 0.001) unlike TPCA or OA. CONCLUSION: Ranibizumab could impair the native choroidal and retinal vascular networks, but its effect seems reversible after its discontinuation.
Resumo:
PURPOSE: To investigate the rhythm and predictability of the need for retreatment with intravitreal injections of ranibizumab for neovascular age-related macular degeneration (nAMD). METHODS: This prospective study enrolled 39 patients with treatment-naïve nAMD. After three loading doses of intravitreal ranibizumab, patients underwent an intensified follow-up for 12 months (initially weekly, then with stepwise increases to every 2 weeks and to monthly after each injection). Patients were retreated on an as-needed basis if any fluid or increased central retinal thickness (CRT) (>50 μm) was found on spectral domain optical coherence tomography (OCT). Statistical analysis included patients who received at least two retreatments (five injections). RESULTS: A mean of 7.5 injections (range 0-12) were given between months 3 and 15. The mean visual acuity increased by 13.1 and 12.6 ETDRS letters at months 12 and 15 respectively. Two or more injection-retreatment intervals were found in 31 patients. The variability of their intra-individual intervals up to 14 weeks was small (SD 0-2.13 weeks), revealing a high regularity of the retreatment rhythm. The SD was correlated with the mean interval duration (r = 0.89, p < 0.001). The first interval was a good predictor of the following intervals (regression coefficient =0.81). One retreatment criterion was stable in 97 % of patients (cysts or subretinal fluid). CONCLUSION: The results of this study demonstrate a high intra-individual predictability of retreatment need with ranibizumab injections for nAMD. These findings may be helpful for developing individualized treatment plans for maintained suppression of disease activity with a minimum of injections and visits.
Resumo:
INTRODUCTION: Functional muscle recovery after peripheral nerve injury is far from optimal, partly due to atrophy of the muscle arising from prolonged denervation. We hypothesized that injecting regenerative cells into denervated muscle would reduce this atrophy. METHODS: A rat sciatic nerve lesion was performed, and Schwann cells or adipose-derived stem cells, untreated or induced to a "Schwann-cell-like" phenotype (dASC), were injected into the gastrocnemius muscle. Nerves were either repaired immediately or capped to prevent muscle reinnervation. One month later, functionality was measured using a walking track test, and muscle atrophy was assessed by examining muscle weight and histology. RESULTS: Schwann cells and dASC groups showed significantly better scores on functional tests when compared with injections of growth medium alone. Muscle weight and histology were also significantly improved in these groups. CONCLUSION: Cell injections may reduce muscle atrophy and could benefit nerve injury patients.
Resumo:
OBJECTIVE: To evaluate the relative efficacy and safety profile of bevacizumab versus ranibizumab intravitreal injections for the treatment of neovascular age-related macular degeneration (AMD). DESIGN: Multicenter, prospective, noninferiority, double-masked, randomized clinical trial performed in 38 French ophthalmology centers. The noninferiority limit was 5 letters. PARTICIPANTS: Patients aged ≥50 years were eligible if they presented with subfoveal neovascular AMD, with best-corrected visual acuity (BVCA) in the study eye of between 20/32 and 20/320 measured on the Early Treatment of Diabetic Retinopathy Study chart and a lesion area of less than 12 optic disc areas (DA). METHODS: Patients were randomly assigned to intravitreal administration of bevacizumab (1.25 mg) or ranibizumab (0.50 mg). Hospital pharmacies were responsible for preparing, blinding, and dispensing treatments. Patients were followed for 1 year, with a loading dose of 3 monthly intravitreal injections, followed by an as-needed regimen (1 injection in case of active disease) for the remaining 9 months with monthly follow-up. MAIN OUTCOME MEASURES: Mean change in visual acuity at 1 year. RESULTS: Between June 2009 and November 2011, 501 patients were randomized. In the per protocol analysis, bevacizumab was noninferior to ranibizumab (bevacizumab minus ranibizumab +1.89 letters; 95% confidence interval [CI], -1.16 to +4.93, P < 0.0001). The intention-to-treat analysis was concordant. The mean number of injections was 6.8 in the bevacizumab group and 6.5 in the ranibizumab group (P = 0.39). Both drugs reduced the central subfield macular thickness, with a mean decrease of 95 μm for bevacizumab and 107 μm for ranibizumab (P = 0.27). There were no significant differences in the presence of subretinal or intraretinal fluid at final evaluation, dye leakage on angiogram, or change in choroidal neovascular area. The proportion of patients with serious adverse events was 12.6% in the bevacizumab group and 12.1% in the ranibizumab group (P = 0.88). The proportion of patients with serious systemic or ocular adverse events was similar in both groups. CONCLUSIONS: Bevacizumab was noninferior to ranibizumab for visual acuity at 1 year with similar safety profiles. Ranibizumab tended to have a better anatomic outcome. The results are similar to those of previous head-to-head studies. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.
Resumo:
The net mechanical efficiency of positive work (eta(pos)) has been shown to increase if it is immediately preceded by negative work. This phenomenon is explained by the storage of elastic energy during the negative phase and its release during the subsequent positive phase. If a transition time (T) takes place, the elastic energy is dissipated into heat. The aim of the present study was to investigate the relationship between eta(pos) and T, and to determine the minimal T required so that eta(pos) reached its minimal value. Seven healthy male subjects were tested during four series of lowering-raising of the body mass. In the first series (S (0)), the negative and positive phases were executed without any transition time. In the three other series, T was varied by a timer (0.12, 0.24 and 0.56 s for series S (1), S (2) and S (3), respectively). These exercises were performed on a force platform sensitive to vertical forces to measure the mechanical work and a gas analyser was used to determine the energy expenditure. The results indicated that eta(pos) was the highest (31.1%) for the series without any transition time (S (0)). The efficiencies observed with transition times (S (1), S (2) and S (3)) were 27.7, 26.0 and 23.8%, respectively, demonstrating that T plays an important role for mechanical efficiency. The investigation of the relationship between eta(pos) and T revealed that the minimal T required so that eta(pos) reached its minimal value is 0.59 s.
Resumo:
Hyperinsulinemia increases lactate release by various organs and tissues. Whereas it has been shown that aerobic glycolysis is linked to Na+-K+-ATPase activity, we hypothesized that stimulation by insulin of skeletal muscle Na+-K+-ATPase is responsible for increased muscle lactate production. To test this hypothesis, we assessed muscle lactate release in healthy volunteers from the [13C]lactate concentration in the effluent dialysates of microdialysis probes inserted into the tibialis anterior muscles on both sides and infused with solutions containing 5 mmol/l [U-13C]glucose. On one side, the microdialysis probe was intermittently infused with the same solution additioned with 2.10(-5) M ouabain. In the basal state, [13C]lactate concentration in the dialysate was not affected by ouabain. During a euglycemic-hyperinsulinemic clamp, [13C]lactate concentration increased by 135% in the dialysate without ouabain, and this stimulation was nearly entirely reversed by ouabain (56% inhibition compared with values in the dialysate collected from the contralateral probe). These data indicate that insulin stimulates muscle lactate release by activating Na+-K+-ATPase in healthy humans.
Resumo:
Calbindin D-28k is a calcium-binding protein which is not expressed by dorsal root ganglion cells cultured from 6-day-old (E6) chick embryos. When soluble muscle extracts from embryos at E11, E18 or chickens 2 weeks after hatching were added immediately after seeding, dorsal root ganglia cells grown at E6 displayed neuronal subpopulations expressing calbindin immunoreactivity with time; the effect of muscle extract on the percentage of calbindin-immunoreactive dorsal root ganglia cells followed a dose-response curve. When muscle extract was added to cultures after a 3 day delay, the percentage of calbindin-expressing neurons was unchanged. The effect produced by muscle extract and, to a lesser degree, skin extract on the appearance of calbindin-positive neurons was not reproduced by brain or liver extracts while all four exerted a trophic action on cultured neurons. Hence it is assumed that muscle extract contains a factor which produces an inductive effect on the initiation of calbindin-expression by uncommitted subpopulations of sensory neurons rather than a trophic influence on the selective survival of covertly committed neuronal subpopulations. The fact that muscle extract promoted calbindin expression by dorsal root ganglia cells in neuron-enriched as well as in mixed dorsal root ganglion cell cultures indicates that the factor would act directly on sensory neurons rather than indirectly through mediation of non-neuronal cells. Since the active muscular factor was non-dialysable, heat-inactivated, trypsin-sensitive and retained by molecular filters with a cut-off of 30 K, this factor is probably a protein.
Resumo:
Vertebroplasty and kyphoplasty have been reported to alter the mechanical behavior of the treated and adjacent-level segments, and have been suggested to increase the risk for adjacent-level fractures. The intervertebral disc (IVD) plays an important role in the mechanical behavior of vertebral motion segments. Comparisons between normal and degenerative IVD motion segments following cement augmentation have yet to be reported. A microstructural finite element model of a degenerative IVD motion segment was constructed from micro-CT images. Microdamage within the vertebral body trabecular structure was used to simulate a slightly (I = 83.5% of intact stiffness), moderately (II = 57.8% of intact stiffness), and severely (III = 16.0% of intact stiffness) damaged motion segment. Six variable geometry single-segment cement repair strategies (models A-F) were studied at each damage level (I-III). IVD and bone stresses, and motion segment stiffness, were compared with the intact and baseline damage models (untreated), as well as, previous findings using normal IVD models with the same repair strategies. Overall, small differences were observed in motion segment stiffness and average stresses between the degenerative and normal disc repair models. We did however observe a reduction in endplate bulge and a redistribution in the microstructural tissue level stresses across both endplates and in the treated segment following early stage IVD degeneration. The cement augmentation strategy placing bone cement along the periphery of the vertebra (model E) proved to be the most advantageous in treating the degenerative IVD models by showing larger reductions in the average bone stresses (vertebral and endplate) as compared to the normal IVD models. Furthermore, only this repair strategy, and the complete cement fill strategy (model F), were able to restore the slightly damaged (I) motion segment stiffness above pre-damaged (intact) levels. Early stage IVD degeneration does not have an appreciable effect in motion segment stiffness and average stresses in the treated and adjacent-level segments following vertebroplasty and kyphoplasty. Placing bone cement in the periphery of the damaged vertebra in a degenerative IVD motion segment, minimizes load transfer, and may reduce the likelihood of adjacent-level fractures.
Resumo:
The aim of our study was to present a new headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable to the routine determination of hydrogen sulfide (H(2)S) concentrations in biological and gaseous samples. The primary analytical drawback of the GC/MS methods for H(2)S measurement discussed in the literature was the absence of a specific H(2)S internal standard required to perform quantification. Although a deuterated hydrogen sulfide (D(2)S) standard is currently available, this standard is not often used because this standard is expensive and is only available in the gas phase. As an alternative approach, D(2)S can be generated in situ by reacting deuterated chloride with sodium sulfide; however, this technique can lead to low recovery yield and potential isotopic fractionation. Therefore, N(2)O was chosen for use as an internal standard. This method allows precise measurements of H(2)S concentrations in biological and gaseous samples. Therefore, a full validation using accuracy profile based on the β-expectation tolerance interval is presented. Finally, this method was applied to quantify H(2)S in an actual case of H(2)S fatal intoxication.
Resumo:
In Duchenne muscular dystrophy, the absence of dystrophin causes progressive muscle wasting and premature death. Excessive calcium influx is thought to initiate the pathogenic cascade, resulting in muscle cell death. Urocortins (Ucns) have protected muscle in several experimental paradigms. Herein, we demonstrate that daily s.c. injections of either Ucn 1 or Ucn 2 to 3-week-old dystrophic mdx(5Cv) mice for 2 weeks increased skeletal muscle mass and normalized plasma creatine kinase activity. Histological examination showed that Ucns remarkably reduced necrosis in the diaphragm and slow- and fast-twitch muscles. Ucns improved muscle resistance to mechanical stress provoked by repetitive tetanizations. Ucn 2 treatment resulted in faster kinetics of contraction and relaxation and a rightward shift of the force-frequency curve, suggesting improved calcium homeostasis. Ucn 2 decreased calcium influx into freshly isolated dystrophic muscles. Pharmacological manipulation demonstrated that the mechanism involved the corticotropin-releasing factor type 2 receptor, cAMP elevation, and activation of both protein kinase A and the cAMP-binding protein Epac. Moreover, both STIM1, the calcium sensor that initiates the assembly of store-operated channels, and the calcium-independent phospholipase A(2) that activates these channels were reduced in dystrophic muscle by Ucn 2. Altogether, our results demonstrate the high potency of Ucns for improving dystrophic muscle structure and function, suggesting that these peptides may be considered for treatment of Duchenne muscular dystrophy.
Resumo:
The aim of this study was to locate the breakpoints of cerebral and muscle oxygenation and muscle electrical activity during a ramp exercise in reference to the first and second ventilatory thresholds. Twenty-five cyclists completed a maximal ramp test on an electromagnetically braked cycle-ergometer with a rate of increment of 25 W/min. Expired gazes (breath-by-breath), prefrontal cortex and vastus lateralis (VL) oxygenation [Near-infrared spectroscopy (NIRS)] together with electromyographic (EMG) Root Mean Square (RMS) activity for the VL, rectus femoris (RF), and biceps femoris (BF) muscles were continuously assessed. There was a non-linear increase in both cerebral deoxyhemoglobin (at 56 ± 13% of the exercise) and oxyhemoglobin (56 ± 8% of exercise) concomitantly to the first ventilatory threshold (57 ± 6% of exercise, p > 0.86, Cohen's d < 0.1). Cerebral deoxyhemoglobin further increased (87 ± 10% of exercise) while oxyhemoglobin reached a plateau/decreased (86 ± 8% of exercise) after the second ventilatory threshold (81 ± 6% of exercise, p < 0.05, d > 0.8). We identified one threshold only for muscle parameters with a non-linear decrease in muscle oxyhemoglobin (78 ± 9% of exercise), attenuation in muscle deoxyhemoglobin (80 ± 8% of exercise), and increase in EMG activity of VL (89 ± 5% of exercise), RF (82 ± 14% of exercise), and BF (85 ± 9% of exercise). The thresholds in BF and VL EMG activity occurred after the second ventilatory threshold (p < 0.05, d > 0.6). Our results suggest that the metabolic and ventilatory events characterizing this latter cardiopulmonary threshold may affect both cerebral and muscle oxygenation levels, and in turn, muscle recruitment responses.
Resumo:
PURPOSE: Plasmid electrotransfer in the ciliary muscle allows the sustained release of therapeutic proteins within the eye. The aim of this study was to evaluate whether the ocular production of TNF-alpha soluble receptor, using this nonviral gene therapy method, could have a beneficial local effect in a model of experimental autoimmune uveoretinitis (EAU). METHODS: Injection of a plasmid encoding a TNF-alpha p55 receptor (30 microg) in the ciliary muscle, combined with electrotransfer (200 V/cm), was carried out in Lewis rat eyes 4 days before the induction of EAU by S-antigen. Control eyes received naked plasmid electrotransfer or simple injection of the therapeutic plasmid. The disease was evaluated clinically and histologically. Cytokines and chemokines were analyzed in the ocular media by multiplex assay performed 15 and 21 days after immunization. RESULTS: Ocular TNF-alpha blockade, resulting from the local secretion of soluble receptors, was associated with delayed and significantly less severe uveitis, together with a reduction of the retinal damages. Compared with the controls, treated eyes showed significantly lower levels of IL-1beta and MCP1, higher levels of IL-13 and IL-4, and reduced NOS-2 expression in infiltrating cells. Treatment did not influence TNF-alpha levels in inguinal lymph nodes. CONCLUSIONS: Taken together, these results indicate that local immunomodulation was achieved and that no systemic adverse effects of TNF-alpha blockade observed after systemic injection of TNF-alpha inhibitors should be expected.
Resumo:
Tumor necrosis factor-alpha (TNF) has been implicated in retinal ganglion cells (RGC) degeneration in glaucoma. Atypical protein kinase C (PKC) zeta is involved in cell protection against various stresses. The aim of this study was to investigate the potential proapoptotic effects of intravitreal injections of TNF with or without PKCzeta specific inhibitor on the rat retina. TNF was injected in the vitreous of rat eyes alone or in combination with specific PKCzeta inhibitor. PKCzeta and NF-kappaB were studied by immunohistochemistry and western-blotting analysis on retina, and apoptosis quantified by the TUNEL assay. While low basal PKCzeta was observed in the control eyes, TNF induced intense expression of PKCzeta mostly in bipolar cells processes. PKCzeta staining became nuclear when TNF was coinjected with PKCzeta inhibitor. TNF alone did not induce apoptosis in the retina. Coinjection of the PKCzeta-specific inhibitor and TNF, however, induced apoptosis in the inner nuclear and ganglion cell layers. The PKCzeta-specific inhibitor unmasks retinal cells to TNF cytotoxicity showing a link between the proapoptotic effects of TNF and the antiapoptotic PKCzeta signaling pathway.
Resumo:
BACKGROUND: The rotator cuff muscles are the main stabilizer of the glenohumeral joint. After total shoulder arthroplasty using anterior approaches, a dysfunction of the subscapularis muscle has been reported. In the present paper we tested the hypothesis that a deficient subscapularis following total shoulder arthroplasty can induce joint instability. METHODS: To test this hypothesis we have developed an EMG-driven musculoskeletal model of the glenohumeral joint. The model was based on an algorithm that minimizes the difference between measured and predicted muscular activities, while satisfying the mechanical equilibrium of the glenohumeral joint. A movement of abduction in the scapular plane was simulated. We compared a normal and deficient subscapularis. Muscle forces, joint force, contact pattern and humeral head translation were evaluated. FINDINGS: To satisfy the mechanical equilibrium, a deficient subscapularis induced a decrease of the force of the infraspinatus muscle. This force decrease was balanced by an increase of the supraspinatus and middle deltoid. As a consequence, the deficient subscapularis induced an upward migration of the humeral head, an eccentric contact pattern and higher stress within the cement. INTERPRETATION: These results confirm the importance of the suscapularis for the long-term stability of total shoulder arthroplasty.