193 resultados para MDSC calorimetry
Resumo:
Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002
Resumo:
The hybridoma cell line ZAC3 expresses Vibrio cholerae lipopolysaccharide (LPS)-specific mouse IgA molecules as a heterogeneous population of monomeric (IgAm), dimeric (IgAd), and polymeric (IgAp) forms. We describe a gentle method combining ultrafiltration, ion-exchange chromatography, and size exclusion chromatography for the simultaneous and qualitative separation of the three molecular forms. Milligram quantities of purified IgA molecules were recovered allowing for direct comparison of the biological properties of the three forms. LPS binding specificity was tested after purification; IgAd and IgAp were found to bind strongly to LPS whereas IgAm did not. Secretory IgA (sIgA) could be reconstituted in vitro by combining recombinant secretory component (rSC) and purified IgAd or IgAp, but not IgAm. Surface plasmon resonance-based binding experiments using LPS monolayers indicated that purified reconstituted sIgA and IgA molecules recognize LPS with identical affinity (KA 1.0 x 10(8)M-1). Thus, this very sensitive assay provides the first evidence that the function of SC in sIgA complex is not to modify the affinity for the antigen. KA falls to 6.6 x 10(5) M-1 when measured by calorimetry using detergent-solubilized LPS and IgA, suggesting that the LPS environment is critical for recognition by the antibody.
Resumo:
The thermogenic response to a 100 g oral glucose load was measured prospectively (by indirect calorimetry) in three groups of obese subjects: (1) normal glucose tolerance (n = 12, initial weight 86.4 +/- 3.9 kg, BMI 30.4 +/- 1.1 kg/m2; (2) impaired glucose tolerance (n = 8, initial weight 105.3 +/- 7.6 kg, body mass index (BMI) 37.6 +/- 2.9 kg/m2; (3) diabetes (n = 12), initial weight 102.1 +/- 5.3 kg, BMI 36.2 +/- 2.0 kg/m2). The thermogenic response to glucose averaged 6.8 +/- 1.1 and 7.0 +/- 1.0 per cent, in the two non-diabetic obese groups respectively, and was significantly lower in the obese diabetic group (3.1 +/- 0.8 per cent). With the evolution of obesity (i.e. 6 years later), the glucose-induced thermogenesis (GIT) was significantly reduced in the non-diabetic groups (P less than 0.05) to 4.1 +/- 0.8 and 3.0 +/- 1.1 per cent respectively, and was still blunted in the diabetic group (2.1 +/- 0.7 per cent). The decrease in GIT was accompanied by a reduction in glucose tolerance and insulin response with no change in fasting plasma insulin. These effects were observed despite the fact that the body weight of the subject did not change significantly over the 6-year period. It is concluded that the decrease in GIT which accompanies the worsening of glucose tolerance and the occurrence of diabetes is a mechanism which may contribute to maintain the obesity state by a reduction of energy expenditure.
Resumo:
The rate of energy expenditure was repeatedly measured by indirect calorimetry both in the basal state (BMR) and in the resting fed state (RMR) in 8 middle-aged male patients operated for oropharyngeal cancer. In the postsurgical phase, two sequential energy levels were administered by nasogastric tube: (1) a 'maintenance' level (days 3-5) at 1.4 X measured presurgery BMR; (2) a 'supramaintenance' level (days 6-9) at 1.7 X measured BMR on day 6. Before surgery the patients had a BMR averaging (23.7 +/- 1.0 kcal/kg.day). After surgery BMR increased to 27.6 +/- 2.7 kcal/kg.day (day 6), then it decreased to 24.4 +/- 1.4 kcal/kg.day (day 10). The difference between RMR and BMR yielded a nutrient-induced thermogenesis averaging 5 +/- 1 and 8.5 +/- 2% (p less than 0.05) on levels 1 and 2, respectively. It is concluded that an energy level corresponding to 1.4 X presurgery BMR is sufficient to maintain energy and substrate equilibrium in nondepleted patients, whereas 1.7 X BMR induces positive protein and fat balances concomitant to a decrease efficiency of energy utilization.
Resumo:
Resting energy expenditure is frequently increased in chronic obstructive pulmonary disease (COPD), but it is unknown if this hypermetabolism holds true over 24 h. The aim of this study was to measure the actual 24-h energy expenditure (24-h EE) in patients with stable COPD. Energy expenditure was measured by indirect calorimetry, using a metabolic chamber for 24-h EE and a canopy for basal metabolic rate (BMR). Physical activity was detected in the chamber by a radar system, and its duration was quantified. Two groups matched for age and height were studied: 16 male ambulatory patients with stable COPD and 12 male normal subjects. Body weight was 92 +/- 12% of ideal body weight in the group with COPD and 108 +/- 11% in the control group (p = 0.01). BMR was 120 +/- 7% of predicted in the group with COPD and 108 +/- 12% in the control group (p < 0.01). However, 24-h EE was similar in the two groups, amounting to 1,935 +/- 259 kcal in patients with COPD and 2,046 +/- 253 kcal in the control group (NS). This corresponded to 145% and 137% of predicted BMR, and to 121% and 126% of measured BMR in patients with COPD and the control group, respectively (NS). Patients were allowed to pursue their usual treatment within the chamber, and a positive correlation existed between 24-h EE and the daily dose of inhaled beta 2-agonists (p < 0.03). During daytime, physical activity was lower in patients with COPD. This study shows that patients with stable COPD are characterized by a normal daily energy expenditure in controlled conditions in spite of an increased basal metabolic rate. They appear to save energy by reducing their spontaneous level of physical activity.
Resumo:
For successful treatment of prosthetic joint infection, the identification of the infecting microorganism is crucial. Cultures of synovial fluid and intraoperative periprosthetic tissue represent the standard method for diagnosing prosthetic joint infection. Rapid and accurate diagnostic tools which can detect a broad range of causing microorganisms and their antimicrobial resistance are increasingly needed. With newer diagnostic techniques, such as sonication of removed implants, microcalorimetry, molecular methods and mass spectrometry, the sensitivity has been significantly increased. In this article, we describe the conventional and newer diagnostic techniques with their advantages and potential future applications.
Resumo:
1. The hypermetabolism frequently observed at rest in patients with chronic obstructive pulmonary disease has been attributed to a high cost of breathing. However, measurement of the cost of breathing by the usual hyperventilation procedure is fraught with methodological problems. The purpose of this study was to measure more directly the cost of breathing in a group of ambulatory patients with stable chronic obstructive pulmonary disease. 2. The cost of breathing was calculated as the difference in oxygen consumption measured by indirect calorimetry between spontaneous breathing and noninvasive mechanical ventilation. Inspiratory muscle rest was achieved by negative or positive pressure ventilation and assessed by the recording of surface electromyograms of the diaphragm and parasternal intercostal muscles. 3. Seven tests were performed in six ambulatory patients with stable chronic obstructive pulmonary disease, four tests using positive pressure ventilation and three with negative pressure ventilation. During mechanical ventilation, the electromyographic activity of the diaphragm decreased by 70 +/- 22%, while that of the parasternals was suppressed in four tests, and remained unchanged in three. However, oxygen consumption was only 1.6 +/- 6.2% lower during mechanical ventilation. 4. The cost of breathing measured in this study was therefore much lower than previously published values. Stress was not likely to influence the results, as both the heart rate and plasma catecholamines did not change between spontaneous breathing and mechanical ventilation. These results suggest that the cost of breathing in ambulatory patients with stable chronic obstructive pulmonary disease may be lower than previously estimated.
Resumo:
We analyzed the initial adhesion and biofilm formation of Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984) on various bone grafts and bone graft substitutes under standardized in vitro conditions. In parallel, microcalorimetry was evaluated as a real-time microbiological assay in the investigation of biofilm formation and material science research. The materials beta-tricalcium phosphate (beta-TCP), processed human spongiosa (Tutoplast) and poly(methyl methacrylate) (PMMA) were investigated and compared with polyethylene (PE). Bacterial counts (log(10) cfu per sample) were highest on beta-TCP (S. aureus 7.67 +/- 0.17; S. epidermidis 8.14 +/- 0.05) while bacterial density (log(10) cfu per surface) was highest on PMMA (S. aureus 6.12 +/- 0.2, S. epidermidis 7.65 +/- 0.13). Detection time for S. aureus biofilms was shorter for the porous materials (beta-TCP and processed human spongiosa, p < 0.001) compared to the smooth materials (PMMA and PE), with no differences between beta-TCP and processed human spongiosa (p > 0.05) or PMMA and PE (p > 0.05). In contrast, for S. epidermidis biofilms the detection time was different (p < 0.001) between all materials except between processed human spongiosa and PE (p > 0.05). The quantitative analysis by quantitative culture after washing and sonication of the material demonstrated the importance of monitoring factors like specific surface or porosity of the test materials. Isothermal microcalorimetry proved to be a suitable tool for an accurate, non-invasive and real-time microbiological assay, allowing the detection of bacterial biomass without removing the biofilm from the surface.
Resumo:
We describe a calorimetric assay for the detection of methicillin-resistant Staphylococcus aureus (MRSA) within 5 h. Microbial heat was calculated in culture with and without cefoxitin. Among 30 genetically distinct clinical isolates, 19/20 MRSA (95%) and 10/10 methicillin-susceptible Staphylococcus aureus (100%) were correctly identified. Microcalorimetry may be useful for rapid MRSA screening.
Resumo:
Molar heat capacities of the binary compounds NiAl, NiIn, NiSi, NiGe, NiBi, NiSb, CoSb and FeSb were determined every 10 K by differential scanning calorimetry in the temperature range 310-1080 K. The experimental results have been fitted versus temperature according to C-p = a + b . T + c . T-2 + d . T-2. Results are given, discussed and compared to estimations found in the literature. Two compounds, NiBi and FeSb, are subject to transformations between 460 and 500 K. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
To explore the changes in resting energy expenditure (REE) and whole body protein turnover induced by malaria, 23 children aged 6 to 14 y (23.9 +/- 1.0 kg, 1.3 +/- 0.02 m) were studied on three separate days after treatment (d 1, d 2, and 15 d later). REE was assessed by indirect calorimetry (hood), whereas whole body protein turnover was estimated using a single dose of [15N]glycine administered p.o. by measuring the isotopic enrichment of [15N]ammonia in urine over 12 h. Within the first 3.5 h after treatment, the body temperature dropped from 39.8 +/- 0.1 to 37.8 +/- 0.1 degrees C (p < 0.0001), and REE followed the same pattern, decreasing rapidly from 223 +/- 6 to 187 +/- 4 kJ/kg/d (p < 0.0001). Whole body protein synthesis and breakdown were significantly higher during the 1st day (5.65 +/- 0.38 and 6.21 +/- 0.43 g/kg/d, respectively) than at d 15 (2.95 +/- 0.17 and 2.77 +/- 0.2 g/kg/d). It is concluded that Gambian children suffering from an acute episode of malaria have an increased REE averaging 37% of the control value (d 15) and that this was associated with a substantial increase (by a factor of 2) in whole body protein turnover. A rapid normalization of the hypermetabolism and protein hypercatabolism states after treatment was observed.
Resumo:
BACKGROUND: High sugar and fat intakes are known to increase intrahepatocellular lipids (IHCLs) and to cause insulin resistance. High protein intake may facilitate weight loss and improve glucose homeostasis in insulin-resistant patients, but its effects on IHCLs remain unknown. OBJECTIVE: The aim was to assess the effect of high protein intake on high-fat diet-induced IHCL accumulation and insulin sensitivity in healthy young men. DESIGN: Ten volunteers were studied in a crossover design after 4 d of either a hypercaloric high-fat (HF) diet; a hypercaloric high-fat, high-protein (HFHP) diet; or a control, isocaloric (control) diet. IHCLs were measured by (1)H-magnetic resonance spectroscopy, fasting metabolism was measured by indirect calorimetry, insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp, and plasma concentrations were measured by enzyme-linked immunosorbent assay and gas chromatography-mass spectrometry; expression of key lipogenic genes was assessed in subcutaneous adipose tissue biopsy specimens. RESULTS: The HF diet increased IHCLs by 90 +/- 26% and plasma tissue-type plasminogen activator inhibitor-1 (tPAI-1) by 54 +/- 11% (P < 0.02 for both) and inhibited plasma free fatty acids by 26 +/- 11% and beta-hydroxybutyrate by 61 +/- 27% (P < 0.05 for both). The HFHP diet blunted the increase in IHCLs and normalized plasma beta-hydroxybutyrate and tPAI-1 concentrations. Insulin sensitivity was not altered, whereas the expression of sterol regulatory element-binding protein-1c and key lipogenic genes increased with the HF and HFHP diets (P < 0.02). Bile acid concentrations remained unchanged after the HF diet but increased by 50 +/- 24% after the HFHP diet (P = 0.14). CONCLUSIONS: Protein intake significantly blunts the effects of an HF diet on IHCLs and tPAI-1 through effects presumably exerted at the level of the liver. Protein-induced increases in bile acid concentrations may be involved. This trial was registered at www.clinicaltrials.gov as NCT00523562.
Resumo:
We evaluated microcalorimetry for real-time susceptibility testing of Aspergillus spp. based on growth-related heat production. The minimal heat inhibitory concentration (MHIC) for A. fumigatus ATCC 204305 was 1 mg/L for amphotericin B, 0.25 mg/L for voriconazole, 0.06 mg/L for posaconazole, 0.125 mg/L for caspofungin and 0.03 mg/L for anidulafungin. Agreement within two 2-fold dilutions between MHIC (determined by microcalorimetry) and MIC or MEC (determined by CLSI M38A) was 90% for amphotericin B, 100% for voriconazole, 90% for posaconazole and 70% for caspofungin. This proof-of-concept study demonstrated the potential of isothermal microcalorimetry for growth evaluation of Aspergillus spp. and real-time antifungal susceptibility testing.
Resumo:
Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002