255 resultados para LIPID-MOBILIZING FACTOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atrial fibrillation (AF) is a frequent arrhythmia after conventional coronary artery bypass grafting. With the advent of minimally invasive technique for left internal mammary artery-left anterior descending coronary artery (LIMA-LAD) grafting, we analyzed the incidence and the risk factors of postoperative AF in this patient population. This prospective study involves all patients undergoing isolated LIMA-LAD grafting with minimally invasive technique between January 1994 and June 2000. Twenty-four possible risk factors for postoperative AF were entered into univariate and multivariate logistic regression analyses. Postoperative AF occurred in 21 of the 90 patients (23.3%) analyzed. Double- or triple-vessel disease was present in 12/90 patients (13.3%). On univariate analysis, right coronary artery disease (p <0.01), age (p = 0.01), and diabetes (p = 0.04) were found to be risk factors for AF. On multivariate analysis, right coronary artery disease was identified as the sole significant risk factor (p = 0.02). In this patient population, the incidence of AF after minimally invasive coronary artery bypass is in the range of that reported for conventional coronary artery bypass grafting. Right coronary artery disease was found to be an independent predictor, and this may be related to the fact that in this patient population the diseased right coronary artery was not revascularized at the time of the surgical procedure. For the same reason, this risk factor may find a broader application to noncardiac thoracic surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Factor D is an essential enzyme for activation of complement by the alternative pathway (AP). It has been difficult to obtain mouse monoclonal antibodies (Mabs) which block the function of factor D. We have developed a strategy to obtain such Mabs using a double screening procedure of the initial clones. We selected the clone whose supernatant had the lowest level of anti-factor D Ab by ELISA and abolished factor D haemolytic activity. Addition of this Mab to human serum was shown to abolish conversion of C3 by cobra venom factor, haemolysis of rabbit erythrocytes, and activation of C3 and C5 by cuprophane dialysis membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, many aspects of metabolism are under circadian control. At least in part, this regulation is achieved by core-clock or clock-controlled transcription factors whose abundance and/or activity oscillate during the day. The clock-controlled proline- and acidic amino acid-rich domain basic leucine zipper proteins D-site-binding protein, thyrotroph embryonic factor, and hepatic leukemia factor have previously been shown to participate in the circadian control of xenobiotic detoxification in liver and other peripheral organs. Here we present genetic and biochemical evidence that the three proline- and acidic amino acid-rich basic leucine zipper proteins also play a key role in circadian lipid metabolism by influencing the rhythmic expression and activity of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). Our results suggest that, in liver, D-site-binding protein, hepatic leukemia factor, and thyrotroph embryonic factor contribute to the circadian transcription of genes specifying acyl-CoA thioesterases, leading to a cyclic release of fatty acids from thioesters. In turn, the fatty acids act as ligands for PPARα, and the activated PPARα receptor then stimulates the transcription of genes encoding proteins involved in the uptake and/or metabolism of lipids, cholesterol, and glucose metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that the renin-angiotensin system contributes to left ventricular hypertrophy and fibrosis, a major determinant of myocardial stiffness. TGF-β1 and renin-angiotensin system signaling alters the fibroblast phenotype by promoting its differentiation into morphologically distinct pathological myofibroblasts, which potentiates collagen synthesis and fibrosis and causes enhanced extracellular matrix deposition. However, the atrial natriuretic peptide, which is induced during left ventricular hypertrophy, plays an anti-fibrogenic and anti-hypertrophic role by blocking, among others, the TGF-β-induced nuclear localization of Smads. It is not clear how the hypertrophic and fibrotic responses are transcriptionally regulated. CLP-1, the mouse homolog of human hexamethylene bis-acetamide inducible-1 (HEXIM-1), regulates the pTEFb activity via direct association with pTEFb causing inhibition of the Cdk9-mediated serine 2 phosphorylation in the carboxyl-terminal domain of RNA polymerase II. It was recently reported that the serine kinase activity of Cdk9 not only targets RNA polymerase II but also the conserved serine residues of the polylinker region in Smad3, suggesting that CLP-1-mediated changes in pTEFb activity may trigger Cdk9-dependent Smad3 signaling that can modulate collagen expression and fibrosis. In this study, we evaluated the role of CLP-1 in vivo in induction of left ventricular hypertrophy in angiotensinogen-overexpressing transgenic mice harboring CLP-1 heterozygosity. We observed that introduction of CLP-1 haplodeficiency in the transgenic α-myosin heavy chain-angiotensinogen mice causes prominent changes in hypertrophic and fibrotic responses accompanied by augmentation of Smad3/Stat3 signaling. Together, our findings underscore the critical role of CLP-1 in remodeling of the genetic response during hypertrophy and fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously reported (Dobreva, I., Waeber, G., Mooser, V., James, R. W., and Widmann, C. (2003) J. Lipid Res. 44, 2382-2390) that low density lipoproteins (LDLs) induce activation of the p38 MAPK pathway, resulting in fibroblast spreading and lamellipodia formation. Here, we show that LDL-stimulated fibroblast spreading and wound sealing are due to secretion of a soluble factor. Using an antibody-based human protein array, interleukin-8 (IL-8) was identified as the main cytokine whose concentration was increased in supernatants from LDL-stimulated cells. Incubation of supernatants from LDL-treated cells with an anti-IL-8 blocking antibody completely abolished their ability to induce cell spreading and mediate wound closure. In addition, fibroblasts treated with recombinant IL-8 spread to the same extent as cells incubated with LDL or supernatants from LDL-treated cells. The ability of LDL and IL-8 to induce fibroblast spreading was mediated by the IL-8 receptor type II (CXCR-2). Furthermore, LDL-induced IL-8 production and subsequent wound closure required the activation of the p38 MAPK pathway, because both processes were abrogated by a specific p38 inhibitor. Therefore, the capacity of LDLs to induce fibroblast spreading and accelerate wound closure relies on their ability to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL cholesterol levels, IL-8 production, and extensive remodeling of the vessel wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For more than a quarter of a century, macrophage migration inhibitory factor (MIF) has been a mysterious cytokine. In recent years, MIF has assumed an important role as a pivotal regulator of innate immunity. MIF is an integral component of the host antimicrobial alarm system and stress response that promotes the pro-inflammatory functions of immune cells. A rapidly increasing amount of literature indicates that MIF is implicated in the pathogenesis of sepsis, and inflammatory and autoimmune diseases, suggesting that MIF-directed therapies might offer new treatment opportunities for human diseases in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the Ly-49 gene family code for class I MHC-specific receptors that regulate NK cell function. Due to a combinatorial distribution of Ly-49 receptors, NK cells display considerable clonal heterogeneity. The acquisition of one Ly-49 receptor, Ly-49A is strictly dependent on the transcriptional trans-acting factor T cell-specific factor-1 (TCF-1). Indeed, TCF-1 binds to two sites in the Ly-49a promoter and regulates its activity, suggesting that the Ly-49a gene is a direct TCF-1 target. TCF-1 deficiency resulted in the altered usage of additional Ly-49 receptors. We show in this study, using TCF-1 beta(2)-microglobulin double-deficient mice, that these repertoire alterations are not due to Ly-49/MHC class I interactions. Our findings rather suggest a TCF-1-dependent, cell autonomous effect on the acquisition of multiple Ly-49 receptors. Besides reduced receptor usage (Ly-49A and D), we also observed no effect (Ly-49C) and significantly expanded (Ly-49G and I) receptor usage in the absence of TCF-1. These effects did not in all cases correlate with the presence of TCF binding sites in the respective proximal promoter. Therefore, besides TCF-1 binding to the proximal promoter, Ly-49 acquisition may also be regulated by TCF-1 binding to more distant cis-acting elements and/or by regulating the expression of additional trans-acting factors. Consistent with the observed differential, positive or negative role of TCF-1 for Ly-49 receptor acquisition, reporter gene assays revealed the presence of an inducing as well as a repressing TCF site in certain proximal Ly-49 promoters. These findings reveal an important role of TCF-1 for the formation of the NK cell receptor repertoire.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the factor structure and the reliability of the French versions of the Identity Style Inventory (ISI-3) and the Utrecht-Management of Identity Commitments Scale (U-MICS) in a sample of college students (N = 457, 18 to 25 years old). Confirmatory factor analyses confirmed the hypothesized three-factor solution of the ISI-3 identity styles (i.e. informational, normative, and diffuse-avoidant styles), the one-factor solution of the ISI-3 identity commitment, and the three-factor structure of the U-MICS (i.e. commitment, in-depth exploration, and reconsideration of commitment). Additionally, theoretically consistent and meaningful associations among the ISI-3, U-MICS, and Ego Identity Process Questionnaire (EIPQ) confirmed convergent validity. Overall, the results of the present study indicate that the French versions of the ISI-3 and UMICS are useful instruments for assessing identity styles and processes, and provide additional support to the cross-cultural validity of these tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUME La télomérase est une enzyme dite "d'immortalité" qui permet aux cellules de maintenir la longueur de leurs télomères, ce qui confère une capacité de réplication illimitée aux cellules reproductrices et cancéreuses. A l'inverse, les cellules somatiques normales, qui n'expriment pas la télomérase, ont une capacité de réplication limitée. La sous-unité catalytique de la télomérase, hTERT, est définie comme le facteur limitant l'activité télomérasique. Entre activateurs et répresseurs, le rôle de la méthylation de l'ADN et de l'acétylation des histones, de nombreux modèles ont été suggérés. La découverte de l'implication de CTCF dans la régulation transcriptionnelle de hTERT explique en partie le mécanisme de répression de la télomérase dans la plupart des cellules somatiques et sa réactivation dans les cellules tumorales. Dans les cellules télomérase-positives, l'activité inhibitrice de CTCF est bloquée par un mécanisme dépendent ou non de la méthylation. Dans la plupart des carcinomes, une hyperméthylation de la région 5' de hTERT bloque l'effet inhibiteur de CTCF, alors qu'une petite région hypométhylée permet un faible niveau de transcription du gène. Nous avons démontré que la protéine MBD2 se lie spécifiquement sur la région 5' méthylée de hTERT dans différentes lignées cellulaires et qu'elle est impliquée dans la répression partielle de la transcription de hTERT dans les cellules tumorales méthylées. Par contre, nous avons montré que dans les lymphocytes B normaux et néoplasiques, la régulation de hTERT est indépendante de la méthylation. Dans ces cellules, le facteur PAX5 se lie sur la région 5' de hTERT en aval du site d'initiation de la traduction (ATG). L'expression exogène de PAX5 dans les cellules télomérase-négatives active la transcription de hTERT, alors que la répression de PAX5 dans les cellules lymphomateuses inhibe la transcription du gène. PAX5 est donc directement impliqué dans l'activation de l'expression de hTERT dans les lymphocytes B exprimant la télomérase. Ces résultats révèlent des différences entre les niveaux de méthylation de hTERT dans les cellules de carcinomes et les lymphocytes B exprimant la télomérase. La méthylation de hTERT en tant que biomarqueur de cancer a été évaluée, puis appliquée à la détection de métastases. Nous avons ainsi montré que la méthylation de hTERT est positivement corrélée au diagnostic cytologique dans les liquides céphalorachidiens. Nos résultats conduisent à un modèle de régulation de hTERT, qui aide à comprendre comment la transcription de ce gène est régulée par CTCF, avec un mécanisme lié ou non à la méthylation du gène hTERT. La méthylation de hTERT s'est aussi révélée être un nouveau et prometteur biomarqueur de cancer. SUMMARY Human telomerase is an "immortalizing" enzyme that enables cells to maintain telomere length, allowing unlimited replicative capacity to reproductive and cancer cells. Conversely, normal somatic cells that do not express telomerase have a finite replicative capacity. The catalytic subunit of telomerase, hTERT, is defined as the limiting factor for telomerase activity. Between activators and repressors, and the role of DNA methylation and histone acetylation, an abundance of hTERT regulatory models have been suggested. The discovery of the implication of CTCF in the transcriptional regulation of hTERT in part explained the mechanism of silencing of telomerase in most somatic cells and its reactivation in neoplastic cells. In telomerase-positive cells, the inhibitory activity of CTCF is blocked by methylation-dependent and -independent mechanisms. In most carcinoma cells, hypermethylation of the hTERT 5' region has been shown to block the inhibitory effect of CTCF, while a short hypomethylated region allows a low transcription level of the gene. We have demonstrated that MBD2 protein specifically binds the methylated 5' region of hTERT in different cell lines and is therefore involved in the partial repression of hTERT transcription in methylated tumor cells. In contrast, we have shown that in normal and neoplastic B cells, hTERT regulation is methylation-independent. The PAX5 factor has been shown to bind to the hTERT 5'region downstream of the ATG translational start site. Ectopic expression of PAX5 in telomerase-negative cells or repression of PAX5 expression in B lymphoma cells respectively activated and repressed hTERT transcription. Thus, PAX5 is strongly implicated in hTERT expression activation in telomerase-positive B cells. These results reveal differences between the hTERT methylation patterns in telomerase-positive carcinoma cells and telomerase-positive normal B cells. The potential of hTERT methylation as a cancer biomarker was evaluated and applied to the detection of metastasis. We have shown that hTERT methylation correlates with the cytological diagnosis in cerebrospinal fluids. Our results suggest a model of hTERT gene regulation, which helps us to better understand how hTERT transcription is regulated by CTCF in methylation-dependant and independent mechanisms. Our data also indicate that hTERT methylation is a promising new cancer biomarker.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the initiation of and response to tumor necrosis factor (TNF) inhibitors for axial spondyloarthritis (axSpA) in private rheumatology practices versus academic centers. METHODS: We compared newly initiated TNF inhibition for axSpA in 363 patients enrolled in private practices with 100 patients recruited in 6 university hospitals within the Swiss Clinical Quality Management (SCQM) cohort. RESULTS: All patients had been treated with ≥ 1 nonsteroidal antiinflammatory drug and > 70% of patients had a baseline Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) ≥ 4 before anti-TNF agent initiation. The proportion of patients with nonradiographic axSpA (nr-axSpA) treated with TNF inhibitors was higher in hospitals versus private practices (30.4% vs 18.7%, p = 0.02). The burden of disease as assessed by patient-reported outcomes at baseline was slightly higher in the hospital setting. Mean levels (± SD) of the Ankylosing Spondylitis Disease Activity Score were, however, virtually identical in private practices and academic centers (3.4 ± 1.0 vs 3.4 ± 0.9, p = 0.68). An Assessment of SpondyloArthritis international Society (ASAS40) response at 1 year was reached for ankylosing spondylitis in 51.7% in private practices and 52.9% in university hospitals (p = 1.0) and for nr-axSpA in 27.5% versus 25.0%, respectively (p = 1.0). CONCLUSION: With the exception of a lower proportion of patients with nr-axSpA newly treated with anti-TNF agents in private practices in comparison to academic centers, adherence to ASAS treatment recommendations for TNF inhibition was equally high, and similar response rates to TNF blockers were achieved in both clinical settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transfer factor for carbon monoxide (TLCO) is widely used in pulmonary function laboratories because it represents a unique non-invasive window on pulmonary microcirculation. The TLCO is the product of two primary measurements, the alveolar volume (VA) and the CO transfer coefficient (KCO). This test is most informative when VA and KCO are examined, together with their product TLCO. In a normal lung, a low VA due to incomplete expansion is associated with an elevated KCO, resulting in a mildly reduced TLCO. Thus, in case of low VA, a seemingly "normal KCO" must be interpreted as an abnormal gas transfer. The most common clinical conditions associated with an abnormal TLCO are characterised by a limited number of patterns for VA and KCO: incomplete lung expansion, discrete loss of alveolar units, diffuse loss of alveolar units, emphysema, pulmonary vascular disorders, high pulmonary blood volume, alveolar haemorrhage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paradoxically, morbid obesity was suggested to protect from cardiovascular co-morbidities as compared to overweight/obese patients. We hypothesise that this paradox could be inferred to modulation of the "endocannabinoid" system on systemic and subcutaneous adipose tissue (SAT) inflammation. We designed a translational project including clinical and in vitro studies at Geneva University Hospital. Morbid obese subjects (n=11) were submitted to gastric bypass surgery (GBS) and followed up for one year (post-GBS). Insulin resistance and circulating and SAT levels of endocannabinoids, adipocytokines and CC chemokines were assessed pre- and post-GBS and compared to a control group of normal and overweight subjects (CTL) (n=20). In vitro cultures with 3T3-L1 adipocytes were used to validate findings from clinical results. Morbid obese subjects had baseline lower insulin sensitivity and higher hs-CRP, leptin, CCL5 and anandamide (AEA) levels as compared to CTL. GBS induced a massive weight and fat mass loss, improved insulin sensitivity and lipid profile, decreased C-reactive protein, leptin, and CCL2 levels. In SAT, increased expression of resistin, CCL2, CCL5 and tumour necrosis factor and reduced MGLL were shown in morbid obese patients pre-GBS when compared to CTL. GBS increased all endocannabinoids and reduced adipocytokines and CC chemokines. In morbid obese SAT, inverse correlations independent of body mass index were shown between palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA) levels and inflammatory molecules. In vitro, OEA inhibited CCL2 secretion from adipocytes via ERK1/2 activation. In conclusion, GBS was associated with relevant clinical, metabolic and inflammatory improvements, increasing endocannabinoid levels in SAT. OEA directly reduced CCL2 secretion via ERK1/2 activation in adipocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatty acids can favour the development of Type 2 diabetes by reducing insulin secretion and inducing apoptosis of pancreatic beta-cells. Here, we show that sustained exposure of the beta-cell line MIN6 or of isolated pancreatic islets to the most abundant circulating fatty acid palmitate increases the level of C/EBPbeta, an insulin transcriptional repressor. In contrast, two unsaturated fatty acids, oleate and linoleate were without effect. The induction of C/EBPbeta elicited by palmitate was prevented by inhibiting the ERK1/2 MAP kinase pathway or by reducing mitochondrial fatty acid oxidation with an inhibitor of Carnitine Palmitoyl Transferase-1. Overexpression of C/EBPbeta mimicked the detrimental effects of palmitate and resulted in a drastic reduction in insulin promoter activity, impairment in the capacity to respond to secretory stimuli and an increase in apoptosis. Our data suggest a potential involvement of C/EBPbeta as mediator of the deleterious effects of unsaturated free fatty acids on beta-cell function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of recent studies revealed that epigenetic modifications play a central role in the regulation of lipid and of other metabolic pathways such as cholesterol homeostasis, bile acid synthesis, glucose and energy metabolism. Epigenetics refers to aspects of genome functions regulated in a DNA sequence-independent fashion. Chromatin structure is controlled by epigenetic mechanisms through DNA methylation and histone modifications. The main modifications are histone acetylation and deacetylation on specific lysine residues operated by two different classes of enzymes: Histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. The interaction between these enzymes and histones can activate or repress gene transcription: Histone acetylation opens and activates chromatin, while deacetylation of histones and DNA methylation compact chromatin making it transcriptionally silent. The new evidences on the importance of HDACs in the regulation of lipid and other metabolic pathways will open new perspectives in the comprehension of the pathophysiology of metabolic disorders.