424 resultados para Investigational therapies
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA), both hospital-acquired and community-acquired, is a dangerous pathogen that is involved in an increasing number of serious infections with high risk for morbidity and mortality. Community-acquired MRSA strains have epidemic potential and can be particularly virulent. Vancomycin has been the standard hospital treatment for the past 40 years, but vancomycin-resistant isolates of S. aureus have emerged in the USA, and vancomycin-intermediate isolates are increasingly being reported worldwide. New antimicrobial agents with activity against multidrug-resistant S. aureus and other resistant pathogens are urgently needed. Despite great strides, further advances in our understanding of the molecular and biochemical mechanisms responsible for antimicrobial resistance are still required. Several agents have been recently approved for the treatment of serious Gram-positive infections, including linezolid, daptomycin, and tigecycline. The novel investigational cephalosporin, ceftobiprole, is one of the first penicillinase-resistant agents to target penicillin-binding protein 2a (or PBP2a), an acquired PBP with low beta-lactam-affinity that confers intrinsic beta-lactam resistance to S. aureus and other staphylococci. This mechanism of PBP binding, including inhibition of PBP2a, confers broad-spectrum activity against clinically important Gram-negative and Gram-positive pathogens, including MRSA. Phase III clinical trials comparing ceftobiprole with vancomycin alone and in combination with ceftazidime for the treatment of complicated skin and skin structure infections showed ceftobiprole to have efficacy similar to the efficacy of these comparators as evidenced by non-inferior clinical cure and microbiological eradication rates.
Resumo:
Purpose: Optimal induction and maintenance immunosuppressive therapies in renal transplantation are still a matter of debate.Chronic corticosteroid usage is a major cause of morbidity but steroid-free immunosuppression (SF) can result in unacceptably high rates of acute rejection and even graft loss. Methods and materials: We have conducted a prospective openlabelled clinical trial in the Geneva-Lausanne Transplant Network from March 2005 to May 2008. 20 low immunological risk (<20% PRA, no DSA) adult recipients of a primary kidney allograft received a 4-day course of thymoglobulin (1.5 mg/kg/d) with methylprednisolone and maintenance based immunosuppression of tacrolimus and entericcoated mycophenolic acid (MPA). The control arm consisted of 16 matched recipients treated with basiliximab induction, tacrolimus, mycophenolate mofetil and corticosteroids. Primary endpoints were the percentage of recipients not taking steroids and the percentage of rejection-free recipients at 12 months.Secondary end points were allograft survival at 12 months and significant thymoglobulin and/or other drugs side effects. Results: In the SF group, 85% of the kidney recipients remained steroid-free at 12 months. The 3 cases of steroids introduction were due to one acute tubulo-interstitial rejection occurring at day 11, one tacrolimus withdrawal due to thrombotic microangiopathy and one MPA withdrawal because of multiple sinusitis and CMV reactivations. No BK viremia was detected nor CMV disease. The 6 CMV negative patients who received a positive CMV allograft had a symptomatic primoinfection after their 6-month course valgancyclovir prophylaxis. In the steroid-based group, 3 acute rejection episodes (acute humoral rejection, acute tubulointerstitial Banff IA and vascular Banff IIA) occurred in 2 recipients, 3 BK virus nephropathies were diagnosed between 45 and 135 days post transplant No side effects were associated with thymoglobulin infusion.In the SF group, 4 recipients presented severe leukopenia or agranulocytosis and one recipient had febrile hepatitis leading to transient MPA withdrawal. Discontinuation of MPA was needed in 2 patients for recurrent sinusitis and CMV reactivations. Patient and graft survival was 100% in both groups at 12 month follow-up. Conclusion: Steroid-free with short-course thymoglobulin induction therapy was a safe protocol in low-risk renal transplant recipients. Lower rates of acute rejection and BK virus infections episodes were seen compared to the steroid-based control group. A longer follow-up will be needed to determine whether this SF immunosuppressive regimen will result in higher graft and patient survival.
Resumo:
OBJECTIVEEvaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects β-cell function and blood glucose homeostasis.RESEARCH DESIGN AND METHODSWe generated a new transgenic model allowing near-total α-cell removal specifically in adult mice. Massive α-cell ablation was triggered in normally grown and healthy adult animals upon diphtheria toxin (DT) administration. The metabolic status of these mice was assessed in 1) physiologic conditions, 2) a situation requiring glucagon action, and 3) after β-cell loss.RESULTSAdult transgenic mice enduring extreme (98%) α-cell removal remained healthy and did not display major defects in insulin counter-regulatory response. We observed that 2% of the normal α-cell mass produced enough glucagon to ensure near-normal glucagonemia. β-Cell function and blood glucose homeostasis remained unaltered after α-cell loss, indicating that direct local intraislet signaling between α- and β-cells is dispensable. Escaping α-cells increased their glucagon content during subsequent months, but there was no significant α-cell regeneration. Near-total α-cell ablation did not prevent hyperglycemia in mice having also undergone massive β-cell loss, indicating that a minimal amount of α-cells can still guarantee normal glucagon signaling in diabetic conditions.CONCLUSIONSAn extremely low amount of α-cells is sufficient to prevent a major counter-regulatory deregulation, both under physiologic and diabetic conditions. We previously reported that α-cells reprogram to insulin production after extreme β-cell loss and now conjecture that the low α-cell requirement could be exploited in future diabetic therapies aimed at regenerating β-cells by reprogramming adult α-cells.
Resumo:
La rétinopathie diabétique touche un nombre croissant de personnes, soit quatre millions en Europe, ce chiffre va probablement doubler d'ici 2030. Si l'on considère que 25-30% de ces patients sont atteints de rétinopathie diabétique, un dépistage et un traitement précoce permettent d'éviter les complications oculaires sévères telles que l'oedème maculaire cystoïde où la rétinopathie diabétique proliférative. Un résumé des dernières données de la littérature ophtalmologique est présenté en insistant sur le rôle de l'anti-VEGF (vascular endothelial growth factor) et des implants intravitréens de corticostéroïdes pour une pathologie oculaire récemment classée dans les pathologies inflammatoires. Diabetic retinopathy affects an increasing number of persons, about 4 millions in Europe, a number that will probably double until 2030. If we consider that 25-30% of patients are affected by diabetic retinopathy, an ophthalmologic screening and early therapy will allow a better visual prognosis and avoid severe ocular complications such as diabetic macular edema and proliferative diabetic retinopathy. A summary of current ophthalmologic literature was performed and was focused on the role of anti-VEGF (vascular endothelial growth factor) therapies and intraocular drug delivery of corticosteroids in a pathology that was recently classified in inflammatory pathologies.
Resumo:
Vascular integrins are essential regulators and mediators of physiological and pathological angiogenesis, including tumor angiogenesis. Integrins provide the physical interaction with the extracellular matrix (ECM) necessary for cell adhesion, migration and positioning, and induce signaling events essential for cell survival, proliferation and differentiation. Integrins preferentially expressed on neovascular endothelial cells, such as alphaVbeta3 and alpha5beta1, are considered as relevant targets for anti-angiogenic therapies. Anti-integrin antibodies and small molecular integrin inhibitors suppress angiogenesis and tumor progression in many animal models, and are currently tested in clinical trials as anti-angiogenic agents. Cyclooxygense-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxans, is highly up-regulated in tumor cells, stromal cells and angiogenic endothelial cells during tumor progression. Recent experiments have demonstrated that COX-2 promotes tumor angiogenesis. Chronic intake of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors significantly reduces the risk of cancer development, and this effect may be due, at least in part, to the inhibition of tumor angiogenesis. Endothelial cell COX-2 promotes integrin alphaVbeta3-mediated endothelial cell adhesion, spreading, migration and angiogenesis through the prostaglandin-cAMP-PKA-dependent activation of the small GTPase Rac. In this article, we review the role of integrins and COX-2 in angiogenesis, their cross talk, and discuss implications relevant to their targeting to suppress tumor angiogenesis.
Resumo:
The process of on-line generation of ultrapure dialysis fluid is a core prerequisite for the safe execution of modern renal replacement therapies such as on-line hemodiafiltration and high-flux hemodialysis. In these extracorporeal treatments with variable degrees of convection, significant volumes of plasma water are removed and replaced with dialysis fluid, which must occur without causing harm to the patient. Historically, on-line generation of sterile and pyrogen-free physiological substitution fluid by the process of membrane ultrafiltration of fresh dialysis fluid has its origin in hemofiltration, a purely convective therapy. Development of this and later therapies is described in the historical context of a successful effort over decades to overcome the above formidable challenge, which was provided jointly by pioneering clinical investigators and a resourceful dialysis industry.
Resumo:
Increasing evidence suggests that adoptive transfer of antigen-specific CD8(+) T cells could represent an effective strategy in the fight against chronic viral infections and malignancies such as melanoma. None the less, a major limitation in the implementation of such therapy resides in the difficulties associated with achieving rapid and efficient expansion of functional T cells in culture necessary to obtain the large numbers required for intravenous infusion. Recently, the critical role of the cytokines interleukin (IL)-2, IL-7 and IL-15 in driving T cell proliferation has been emphasized, thus suggesting their use in the optimization of expansion protocols. We have used major histocompatibility complex (MHC) class I/peptide multimers to monitor the expansion of antigen-specific CD8 T lymphocytes from whole blood, exploring the effect of antigenic peptide dose, IL-2, IL-7 and IL-15 concentrations on the magnitude and functional characteristics of the antigen-specific CD8(+) T cells generated. We show here that significant expansions of antigen-specific T cells, up to 50% of the CD8(+) T cell population, can be obtained after a single round of antigen/cytokine (IL-2 or IL-15) stimulation, and that these cells display good cytolytic and interferon (IFN)-gamma secretion capabilities. Our results provide an important basis for the rapid in vitro expansion of autologous T cells from the circulating lymphocyte pool using a simple procedure, which is necessary for the development of adoptive transfer therapies.
Resumo:
Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials.
Resumo:
In this review, intratumoral drug disposition will be integrated into the wide range of resistance mechanisms to anticancer agents with particular emphasis on targeted protein kinase inhibitors. Six rules will be established: 1. There is a high variability of extracellular/intracellular drug level ratios; 2. There are three main systems involved in intratumoral drug disposition that are composed of SLC, ABC and XME enzymes; 3. There is a synergistic interplay between these three systems; 4. In cancer subclones, there is a strong genomic instability that leads to a highly variable expression of SLC, ABC or XME enzymes; 5. Tumor-expressed metabolizing enzymes play a role in tumor-specific ADME and cell survival and 6. These three systems are involved in the appearance of resistance (transient event) or in the resistance itself. In addition, this article will investigate whether the overexpression of some ABC and XME systems in cancer cells is just a random consequence of DNA/chromosomal instability, hypo- or hypermethylation and microRNA deregulation, or a more organized modification induced by transposable elements. Experiments will also have to establish if these tumor-expressed enzymes participate in cell metabolism or in tumor-specific ADME or if they are only markers of clonal evolution and genomic deregulation. Eventually, the review will underline that the fate of anticancer agents in cancer cells should be more thoroughly investigated from drug discovery to clinical studies. Indeed, inhibition of tumor expressed metabolizing enzymes could strongly increase drug disposition, specifically in the target cells resulting in more efficient therapies.
Resumo:
Antibody-drug conjugates (ADC) are emerging as powerful treatment strategies with outstanding target-specificity and high therapeutic activity in patients with cancer. Brentuximab vedotin represents a first-in-class ADC directed against CD30(+) malignancies. We hypothesized that its sustained clinical responses could be related to the stimulation of an anticancer immune response. In this study, we demonstrate that the dolastatin family of microtubule inhibitors, from which the cytotoxic component of brentuximab vedotin is derived, comprises potent inducers of phenotypic and functional dendritic cell (DC) maturation. In addition to the direct cytotoxic effect on tumor cells, dolastatins efficiently promoted antigen uptake and migration of tumor-resident DCs to the tumor-draining lymph nodes. Exposure of murine and human DCs to dolastatins significantly increased their capacity to prime T cells. Underlining the requirement of an intact host immune system for the full therapeutic benefit of dolastatins, the antitumor effect was far less pronounced in immunocompromised mice. We observed substantial therapeutic synergies when combining dolastatins with tumor antigen-specific vaccination or blockade of the PD-1-PD-L1 and CTLA-4 coinhibitory pathways. Ultimately, treatment with ADCs using dolastatins induces DC homing and activates cellular antitumor immune responses in patients. Our data reveal a novel mechanism of action for dolastatins and provide a strong rationale for clinical treatment regimens combining dolastatin-based therapies, such as brentuximab vedotin, with immune-based therapies. Cancer Immunol Res; 2(8); 741-55. ©2014 AACR.
Resumo:
RÉSUMÉ : Chez l'homme, le manque de sélectivité des agents thérapeutiques représente souvent une limitation pour le traitement des maladies. Le ciblage de ces agents pour un tissu défini pourrait augmenter leur sélectivité et ainsi diminuer les effets secondaires en comparaison d'agents qui s'accumuleraient dans tout le corps. Cela pourrait aussi améliorer l'efficacité des traitements en permettant d'avoir une concentration localisée plus importante. Le ciblage d'agents thérapeutiques est un champ de recherche très actif. Les stratégies sont généralement basées sur les différences entre cellules normales et malades. Ces différences peuvent porter soit sur l'expression des molécules à leurs surfaces comme des récepteurs ou des transporteurs, soit sur les activités enzymatiques exprimées. Le traitement thérapeutique choisi ici est la thérapie photodynamique et est déjà utilisé pour le traitement de certains cancers. Cette thérapie repose sur l'utilisation de molécules qui réagissent à la lumière, les photosensibilisants. Elles absorbent l'énergie lumineuse et réagissent avec l'oxygène pour former des radicaux toxiques pour les cellules. Les photosensibilisants utilisés ici sont de deux natures : (i) soit ils sont tétrapyroliques (comme les porphyrines et chlorines), c'est à dire qu'ils sont directement activables par la lumière ; (ii) soit ce sont des prodrogues de photosensibilisants comme l'acide 5aminolévulinique (ALA) qui est transformé dans la cellule en protoporphyrine IX photosensibilisante. Dans le but d'augmenter la sélectivité des photosensibilisants, nous avons utilisé deux stratégies différentes : (i) le photosensibilisant est modifié par le greffage d'un agent de ciblage ; (ii) le photosensibilisant est incorporé dans des structures moléculaires de quelques centaines de nanomètres. Les sucres et l'acide folique sont des agents de ciblage largement établis et ont été utilisés ici car leurs récepteurs sont surexprimés à la surface de nombreuses cellules malades. Ainsi, des dérivés sucres ou acide folique de l'ALA ont été synthétisés et évalués in vitro sur de nombreuses lignées cellulaires cancéreuses. La stratégie utilisant l'acide folique est apparue incompatible avec l'utilisation de l'ALA puisque aucune photosensibilité n'a été induite par le composé. La stratégie utilisant les sucres a, par ailleurs, provoquée de bonnes photosensibilités mais pas d'augmentation de sélectivité. En parallèle, la combinaison entre les propriétés anticancéreuses des complexes métalliques au ruthénium avec les propriétés photosensibilisantes des porphyrines, a été évaluée. En effet, les thérapies combinées ont émergé il y a une dizaine d'années et représentent aujourd'hui de bonnes alternatives aux monothérapies classiques. Des ruthenium(I1)-arènes complexés avec la tetrapyridylporphyrine ont ainsi présenté de bonnes cytotoxicités et de bonnes phototoxicités pour des cellules de mélanomes. Des porphyrines ont aussi été compléxées avec des noyaux de diruthénium et ce type de dérivé a présenté de bonnes phototoxicités et une bonne sélectivité pour les cellules cancéreuses de l'appareil reproducteur féminin. L'incorporation de photosensibilisants tétrapyroliques a finalement été effectuée en utilisant des nanoparticules (NP) biocompatibles composées de chitosan et de hyaluronate. L'effet de ces NP a été évalué pour le traitement de la polyarthrite rhumatoïde (PR). Les NP ont d'abord été testées in vitro avec des macrophages de souris et les résultats ont mis en évidence de bonnes sélectivités et photosensibilités pour ces cellules. In vivo chez un modèle marin de la PR, l'utilisation de ces NP a révélé un plus grand temps de résidence des NP dans le genou de la souris en comparaison du temps obtenu avec le photosensibilisant seul. Le traitement par PDT a aussi démontré une bonne efficacité par ailleurs égale à celle obtenue avec les corticoïdes utilisés en clinique. Pour finir, les NP ont aussi démontré une bonne efficacité sur les myelomonocytes phagocytaires humains et sur les cellules contenues dans le liquide synovial de patients présentant une PR. Tous ces résultats suggèrent que les deux stratégies de ciblage peuvent être efficaces pour les agents thérapeutiques. Afm d'obtenir de bons résultats, il est toutefois nécessaire de réaliser une analyse minutieuse de la cible et du mode d'action de l'agent thérapeutique. Concernant les perspectives, la combinaison des deux stratégies c'est à dire incorporer des agents thérapeutiques dans des nanostructures porteuses d'agents de ciblage, représente probablement une solution très prometteuse. SUMMARY : In humans, the lack of selectivity of drugs and their high effective concentrations often represent limitations for the treatment of diseases. Targeting the therapeutical agents to a defined tissue could enhance their selectivity and then diminish their side effects when compared to drugs that accumulate in the entire body and could also improve treatment efûciency by allowing a localized high concentration of the agents. Targeting therapeutics to defined cells in human pathologies is a main challenge and a very active field of research. Strategies are generally based on the different behaviors and patterns of expression of diseased cells compared to normal cells such as receptors, proteases or trans-membrane carriers. The therapeutic treatment chosen here is the photodynamic therapy and is already used in the treatment of many cancers. This therapy relies on the administration of a photosensitizer (PS) which will under light, react with oxygen and induce formation of reactive oxygen species which are toxic for cells. The PSs used here are either tetrapyrolic (i. e. porphyries and chlorins) or prodrugs of PS (5-aminolevulinic acid precursor of the endogenous protoporphyrin Imo. In order to improve PS internalization and selectivity, we have used two different strategies: the modification of the PSs with diseased cell-targeting agents as well as their encapsulation into nanostructures. Sugars and folic acid are well established as targeting entities for diseased cells and were used here since their transporters are overexpressed on the surface of many cancer cells. Therefore sugar- and folic acid-derivatives of 5-aminolevulinic acid (ALA) were synthesized and evaluated in vitro in several cancer cell lines. The folic acid strategy appeared to be incompatible with ALA since no photosensitivity was induced while the strategy with sugars induced good photosensitivites but no increase of selectivity. Alternatively, the feasibility of combining the antineoplastic properties of ruthenium complexes with the porphyrin's photosensitizing properties, was evaluated since combined therapies have emerged as good alternatives to classical treatments. Tetrapyridylporphyrins complexed to ruthenium (I17 arenes presented good cytotoxicities and good phototoxicities toward melanoma cells. Porphyries were also complexed to diruthenium cores and this type of compound presented good phototoxicities and good selectivity for female reproductive cancer cells. The encapsulation of tetrapyrolic PSs was finally investigated using biocompatible nanogels composed of chitosan and hyaluronate. The behavior of these nanoparticles was evaluated for the treatment of rheumatoid arthritis (RA). They were first tested in vitro in mouse macrophages and results revealed good selectivities and phototoxicities toward these cells. In vivo in mice model of RA, the use of such nanoparticles instead of free PS showed longer time of residence in mice knees. Photodynamic protocols also demonstrated good efficiency of the treatment comparable to the corticoid injection used in the clinic. Finally our system was also efficient in human cells using phagocytic myelomonocytes or using cells of synovial fluids taken from patients with RA. Altogether, these results revealed that both strategies of modification or encapsulation of drugs can be successful in the targeting of diseased cells. However, a careful analysis of the target and of the mode of action of the drug, are needed in order to obtain good results. Looking ahead to the future, the combination of the two strategies (i.e. drugs loaded into nanostructures bearing the targeting agents) would represent probably the best solution.
Resumo:
Anti-self/tumor T cell function can be improved by increasing TCR-peptide MHC (pMHC) affinity within physiological limits, but paradoxically further increases (K(d) < 1 μM) lead to drastic functional declines. Using human CD8(+) T cells engineered with TCRs of incremental affinity for the tumor antigen HLA-A2/NY-ESO-1, we investigated the molecular mechanisms underlying this high-affinity-associated loss of function. As compared with cells expressing TCR affinities generating optimal function (K(d) = 5 to 1 μM), those with supraphysiological affinity (K(d) = 1 μM to 15 nM) showed impaired gene expression, signaling, and surface expression of activatory/costimulatory receptors. Preferential expression of the inhibitory receptor programmed cell death-1 (PD-1) was limited to T cells with the highest TCR affinity, correlating with full functional recovery upon PD-1 ligand 1 (PD-L1) blockade. In contrast, upregulation of the Src homology 2 domain-containing phosphatase 1 (SHP-1/PTPN6) was broad, with gradually enhanced expression in CD8(+) T cells with increasing TCR affinities. Consequently, pharmacological inhibition of SHP-1 with sodium stibogluconate augmented the function of all engineered T cells, and this correlated with the TCR affinity-dependent levels of SHP-1. These data highlight an unexpected and global role of SHP-1 in regulating CD8(+) T cell activation and responsiveness and support the development of therapies inhibiting protein tyrosine phosphatases to enhance T cell-mediated immunity.
Resumo:
Introduction: The presence of intra-articular basic calcium phosphate (BCP) crystals, including OCP, carbonated-apatite, hydroxyapatite and tricalcium phosphate crystals, is associated with severe osteoarthritis and destructive arthropathies such as Milwaukee shoulder. Although BCP crystals displayed, in vitro, mitogenic, anabolic and catabolic responses, their intra-articular effect was never assessed.Objective: To determine the effects of OCP crystals in joints in vivo.Methods: OCP crystals (200 ug in 20 ml PBS) were injected into the right knee joint (the contra-lateral knee joint injected with 20 ul of PBS serving as a control) of wild-type mice treated or not by the IL1R antagonist Anakinra or mice deficient for the inflammasome proteins ASC and NALP3. 4 days and 17 days after crystal injection, mice were sacrificed and knee joints dissected. Histological scoring for synovial inflammation and characterisation of macrophages, neutrophils and T cells were performed. Technetium (Tc) uptake was measured at 6h, 1 and 4 days after OCP injection. Cartilage degradation was evaluated by Safranin O staining and VDIPEN immunohistochemistry. Intra-articular localisation of injected OCP crystals was evidenced by Von Kossa staining.Results: The intra-articular localisation of injected OCP crystals was evidenced by Von Kossa staining performed on non-decalcified samples embedded in methyl-metacrylate. Injection of OCP crystals into knee joints led at day 4 to an inflammatory response with intense macrophage staining and also some neutrophil recruitment in the synovial membrane. This synovitis was not accompanied by increased Tc uptake into the knee joint, Tc uptake being similar in OCP crystal injected knee or control knee at all time points investigated (6h, 1 day, 4 days). The histological modifications persisted over 17 days, with an additional fibrosis evidenced at this later time-point. The OCP crystal-induced synovitis was totally IL-1a and IL-1 independent as shown by the absence of inhibitory effects of anakinra injected into wild-type mice. Accordingly, OCP crystal-induced synovitis was similar in ASC-/- and NALP3-/- mice as no alterations of inflammation were demonstrated between these mice groups. Concerning cartilage matrix degradation, OCP crystals induced a strong breakdown of proteoglycans 4 and 17 days after injection, as measured by loss of red staining from Safranin O-stained sections of cartilage surfaces. In addition, we also measured advanced cartilage matrix destruction mediated by MMPs, as evidenced by VDIPEN staining of cartilage. OCP-mediated cartilage degradation was similar in all experimental conditions tested (WT+Anakinra, or ASC or NALP3 deficient mice).Conclusion: These data indicate in vivo that the intra-articular presence of OCP crystals is associated with cartilage destruction along with synovial inflammation. This is an interesting and new model of destructive arthropathy related to BCP crystals which will allow to assess new therapies in this disease.
Resumo:
BACKGROUND: Both non-traumatic and traumatic spinal cord injuries have in common that a relatively minor structural lesion can cause profound sensorimotor and autonomous dysfunction. Besides treating the cause of the spinal cord injury the main goal is to restore lost function as far as possible. AIM: This article provides an overview of current innovative diagnostic (imaging) and therapeutic approaches (neurorehabilitation and neuroregeneration) aiming for recovery of function after non-traumatic and traumatic spinal cord injuries. MATERIAL AND METHODS: An analysis of the current scientific literature regarding imaging, rehabilitation and rehabilitation strategies in spinal cord disease was carried out. RESULTS: Novel magnetic resonance imaging (MRI) based techniques (e.g. diffusion-weighted MRI and functional MRI) allow visualization of structural reorganization and specific neural activity in the spinal cord. Robotics-driven rehabilitative measures provide training of sensorimotor function in a targeted fashion, which can even be continued in the homecare setting. From a preclinical point of view, defined stem cell transplantation approaches allow for the first time robust structural repair of the injured spinal cord. CONCLUSION: Besides well-established neurological and functional scores, MRI techniques offer the unique opportunity to provide robust and reliable "biomarkers" for restorative therapeutic interventions. Function-oriented robotics-based rehabilitative interventions alone or in combination with stem cell based therapies represent promising approaches to achieve substantial functional recovery, which go beyond current rehabilitative treatment efforts.
Resumo:
Södgren's syndrome treatment has essentially been based on symptomatic approach and has been of limited efficacy. Novel biological therapies targeting B cells, a key player in the pathophysiology of the syndrome, have recently been tested in controlled clinical trials and raise the hope of improving glandular and extraglandular manifestations of Söigren's syndrome.