357 resultados para Immune deficiency syndromes
Resumo:
Both the central and the peripheral nervous systems are prone to multiple age-dependent neurological deficits, often attributed to still unknown alterations in the function of myelinating glia. To uncover the biological processes affected in glial cells by aging, we analyzed gene expression of the Schwann cell-rich mouse sciatic nerve at 17 time points throughout life, from day of birth until senescence. By combining these data with the gene expression data of myelin mouse mutants carrying deletions of either Pmp22, SCAP, or Lpin1, we found that the majority of age-related transcripts were also affected in myelin mutants (54.4%) and were regulated during PNS development (59.5%), indicating a high level of overlap in implicated molecular pathways. The expression profiles in aging copied the direction of transcriptional changes observed in neuropathy models; however, they had the opposite direction when compared with PNS development. The most significantly altered biological processes in aging involved the inflammatory/immune response and lipid metabolism. Interestingly, both these pathways were comparably changed in the aging optic nerve, suggesting that similar biological processes are affected in aging of glia-rich parts of the central and peripheral nervous systems. Our comprehensive comparison of gene expression in three distinct biological conditions including development, aging, and myelin disease thus revealed a previously unanticipated relationship among themselves and identified lipid metabolism and inflammatory/immune response pathways as potential therapeutical targets to prevent or delay so far incurable age-related and inherited forms of neuropathies.
Resumo:
A 5-year-old previously healthy boy was admitted for abdominal pain and vomiting. Physical examination showed tachypnoe (32/min), hepatomegaly and painful palpation of the upper right abdominal quadrant. Laboratory tests were normal except for elevated ammonium (202mcmol/l). Chest X-ray was performed, showing cardiomegaly and interstitial edema. Transthoracic echocardiography revealed dilated left cavities and LV hypertrophy together with a diffuse hypokinesia and LVEF of 30-40%. Diuretics and ACE-inhibitors were introduced. At that time, the differential diagnosis for the DCM included myocarditis, congenital or genetic, metabolic or autoimmune disease. The next day, the boy underwent cardiac magnetic resonance (CMR) examination, showing a severe dilatation of the LV with an end-diastolic diameter of 50mm and a volume of 150ml. LVEF was 20% with diffuse LV hypokinesia (Fig. 1). No late enhancement was present after Gadolinium injection, ruling out myocarditis. Further laboratory metabolic analysis indicated severely decreased total and free carnitin levels and low renal carnitin reabsorption, corroborating the diagnosis of primary carnitin deficiency (PCD). Carnitin substitution was initiated. The clinical condition rapidly improved. No symptoms of heart failure were present anymore. A follow-up CMR performed 9 months later confirmed the recovery. LV end-diastolic volume decreased from 150ml to 66ml, LVEF increased from 20% to 55% (Fig. 2). Late enhancement was absent after Gadolinum injection (Fig. 3).Carnitin is required for the transport of fatty acids from the cytosol into mitochondria during lipid breakdown. 75% of carnitin is obtained from food, 25% is endogenously synthesized. PCD is an autosomal recessive disorder resulting from impairment of a transporter activity, caused by mutation of the SLC22A5 gene. Incidence is about 1 in 40'000 newborns. Diagnosis is usually made at age 1 to 7. Three forms of PCD are described. In the form associated with cardiomyopathy, the disease is progressive and patient die from heart failure if not treated. Substitution of L-Carnitin leads to a dramatic improvement of disease course.This case underlines the crucial role of etiologic diagnostics in this reversible form of DCM. Early diagnostics and therapy are critical for the prognosis of the patient. This is furthermore an example of a role played by CMR in the diagnostic work-up of heart failure and its follow-up under therapy.
Resumo:
Vitamin K deficiency bleeding within the first 24 h of life is caused in most cases by maternal drug intake (e.g. coumarins, anticonvulsants, tuberculostatics) during pregnancy. Haemorrhage is often life-threatening and usually not prevented by vitamin K prophylaxis at birth. We report a case of severe intracranial bleeding at birth secondary to phenobarbital-induced vitamin K deficiency and traumatic delivery. Burr hole trepanations of the skull were performed and the subdural haematoma was evacuated. Despite the severe prognosis, the infant showed an unexpected good recovery. At the age of 3 years, neurological examinations were normal as was the EEG at the age of 9 months. CT showed close to normal intracranial structures. CONCLUSION: This case report stresses the importance of antenatal vitamin K prophylaxis and the consideration of a primary Caesarean section in maternal vitamin K deficiency states and demonstrates the successful management of massive subdural haemorrhage by a limited surgical approach.
Resumo:
Persistent viruses are kept in check by specific lymphocytes. The clonal T cell receptor (TCR) repertoire against Epstein-Barr virus (EBV), once established following primary infection, exhibits a robust stability over time. However, the determinants contributing to this long-term persistence are still poorly characterized. Taking advantage of an in vivo clinical setting where lymphocyte homeostasis was transiently perturbed, we studied EBV antigen-specific CD8 T cells before and after non-myeloablative lympho-depleting chemotherapy of melanoma patients. Despite more advanced T cell differentiation, patients T cells showed clonal composition comparable to healthy individuals, sharing a preference for TRBV20 and TRBV29 gene segment usage and several co-dominant public TCR clonotypes. Moreover, our data revealed the presence of relatively few dominant EBV antigen-specific T cell clonotypes, which mostly persisted following transient lympho-depletion (TLD) and lymphocyte recovery, likely related to absence of EBV reactivation and de novo T cell priming in these patients. Interestingly, persisting clonotypes frequently co-expressed memory/homing-associated genes (CD27, IL7R, EOMES, CD62L/SELL and CCR5) supporting the notion that they are particularly important for long-lasting CD8 T cell responses. Nevertheless, the clonal composition of EBV-specific CD8 T cells was preserved over time with the presence of the same dominant clonotypes after non-myeloablative chemotherapy. The observed clonotype persistence demonstrates high robustness of CD8 T cell homeostasis and reconstitution.
Resumo:
The identity of minor lymphocytes stimulating (Mls) antigens, endogenous superantigens that can activate, or induce the deletion of, large portions of the T-cell repertoire, has recently been revealed: they are encoded by mouse mammary tumor viruses (MMTV) that have integrated into the germ line as DNA proviruses. As Hans Acha-Orbea and Ed Palmer point out, Mls-mediated modulation may be only the tip of the retrovirus iceberg; already murine leukemia virus (MuLV), with similar superantigen properties, has been discovered.
Resumo:
Mouse mammary tumor virus (MMTV) is a retrovirus which induces a strong immune response and a dramatic increase in the number of infected cells through the expression of a superantigen (SAg). Many cytokines are likely to be involved in the interaction between MMTV and the immune system. In particular, alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) exert many antiviral and immunomodulatory activities and play a critical role in other viral infections. In this study, we have investigated the importance of interferons during MMTV infection by using mice with a disrupted IFN-alpha/beta or IFN-gamma receptor gene. We found that the SAg response to MMTV was not modified in IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice. This was true both for the early expansion of B and T cells induced by the SAg and for the deletion of SAg-reactive cells at later stages of the infection. In addition, no increase in the amount of proviral DNA was detected in tissues of IFN-alpha/betaR(0/0) and IFN-gammaR(0/0) mice, suggesting that interferons are not essential antiviral defense mechanisms during MMTV infection. In contrast, IFN-gammaR(0/0) mice had increased amounts of IL-4 mRNA and an altered usage of immunoglobulin isotypes with a reduced frequency of IgG2a- and IgG3-producing cells. This was associated with lower titers of virus-specific antibodies in serum early after infection, although efficient titers were reached later.
Resumo:
The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.
Resumo:
We recently reported on the deficiency of carbohydrate sulfotransferase 3 (CHST3; chondroitin-6-sulfotransferase) in six subjects diagnosed with recessive Larsen syndrome or humero-spinal dysostosis [Hermanns et al. (2008); Am J Hum Genet 82:1368-1374]. Since then, we have identified 17 additional families with CHST3 mutations and we report here on a series of 24 patients in 23 families. The diagnostic hypothesis prior to molecular analysis had been: Larsen syndrome (15 families), humero-spinal dysostosis (four cases), chondrodysplasia with multiple dislocations (CDMD "Megarbane type"; two cases), Desbuquois syndrome (one case), and spondylo-epiphyseal dysplasia (one case). In spite of the different diagnostic labels, the clinical features in these patients were similar and included dislocation of the knees and/or hips at birth, clubfoot, elbow joint dysplasia with subluxation and limited extension, short stature, and progressive kyphosis developing in late childhood. The most useful radiographic clues were the changes of the lumbar vertebrae. Twenty-four different CHST3 mutations were identified; 16 patients had homozygous mutations. We conclude that CHST3 deficiency presents at birth with congenital dislocations of knees, hips, and elbows, and is often diagnosed initially as Larsen syndrome, humero-spinal dysostosis, or chondrodysplasia with dislocations. The incidence of CHST3 deficiency seems to be higher than assumed so far. The clinical and radiographic pattern (joint dislocations, vertebral changes, normal carpal age, lack of facial flattening, and recessive inheritance) is characteristic and distinguishes CHST3 deficiency from other disorders with congenital dislocations such as filamin B-associated dominant Larsen syndrome and Desbuquois syndrome.
Resumo:
Superantigens (SAgs) are microbial proteins which have potent effects on the immune system. They are presented by major histocompatibility complex (MHC) class II molecules and interact with a large number of T cells expressing specific T cell receptor V beta domains. Encounter of a SAg leads initially to the stimulation and subsequently to the clonal deletion of reactive T cells. SAgs are expressed by a wide variety of microorganisms which use them to exploit the immune system to their own advantage. Bacterial SAgs are exotoxins which are linked to several diseases in humans and animals. A classical example is the toxic shock syndrome in which the massive release of cytokines by SAg-reactive cells is thought to play a major pathogenic role. The best characterized viral SAg is encoded by mouse mammary tumour virus (MMTV) and has proved to have a major influence on the viral life cycle by dramatically increasing the efficiency of viral infection. In this paper, we review the general properties of SAgs and discuss the different types of microorganisms which produce these molecules, with a particular emphasis on the role played by the SAg-induced immune response in the course of microbial infections.
Resumo:
Context: GnRH deficiency is a rare genetic disorder of absent or partial pubertal development. The clinical and genetic characteristics of GnRH-deficient women have not been well-described. Objective: To determine the phenotypic and genotypic spectrum of a large series of GnRH-deficient women. Design, Setting, and Subjects: Retrospective study of 248 females with GnRH deficiency evaluated at an academic medical center between 1980 and 2010. Main Outcome Measures: Clinical presentation, baseline endogenous GnRH secretory activity, and DNA sequence variants in 11 genes associated with GnRH deficiency. Results: Eighty-eight percent had undergone pubarche, 51% had spontaneous thelarche, and 10% had 1-2 menses. Women with spontaneous thelarche were more likely to demonstrate normal pubarche (P = 0.04). In 27% of women, neuroendocrine studies demonstrated evidence of some endogenous GnRH secretory activity. Thirty-six percent (a large excess relative to controls) harbored a rare sequence variant in a gene associated with GnRH deficiency (87% heterozygous and 13% biallelic), with variants in FGFR1 (15%), GNRHR (6.6%), and PROKR2 (6.6%) being most prevalent. One woman had a biallelic variant in the X-linked gene, KAL1, and nine women had heterozygous variants. Conclusions: The clinical presentation of female GnRH deficiency varies from primary amenorrhea and absence of any secondary sexual characteristics to spontaneous breast development and occasional menses. In this cohort, rare sequence variants were present in all of the known genes associated with GnRH deficiency, including the novel identification of GnRH-deficient women with KAL1 variants. The pathogenic mechanism through which KAL1 variants disrupt female reproductive development requires further investigation.
Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet.
Resumo:
OBJECTIVE-Obesity and associated pathologies are major global health problems. Transforming growth factor-beta/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic beta-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes.RESEARCH DESIGN AND METHODS-We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance.RESULTS-Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein beta-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor beta/delta and proliferator-activated receptor gamma expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid beta-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet.CONCLUSIONS-Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders.
Resumo:
SUMMARYThe innate immune system plays a central role in host defenses against invading pathogens. Innate immune cells sense the presence of pathogens through pattern recognition receptors that trigger intracellular signaling, leading to the production of pro-inflammatory mediators like cytokines, which shape innate and adaptive immune responses. Both by excess and by default inflammation may be detrimental to the host. Indeed, severe sepsis and septic shock are lethal complications of infections characterized by a dysregulated inflammatory response.In recent years, members of the superfamily of histone deacetylases have been the focus of great interest. In mammals, histone deacetylases are broadly classified into two main subfamilies comprising histone deacetylases 1-11 (HDAC1-11) and sirtuins 1-7 (SIRT1-7). These enzymes influence gene expression by deacetylating histones and numerous non-histone proteins. Histone deacetylases have been involved in the development of oncologic, metabolic, cardiovascular, neurodegenerative and autoimmune diseases. Pharmacological modulators of histone deacetylase activity, principally inhibitors, have been developed for the treatment of cancer and metabolic diseases. When we initiated this project, several studies suggested that inhibitors of HDAC 1-11 have anti-inflammatory activity. Yet, their influence on innate immune responses was largely uncharacterized. The present study was initiated to fill in this gap.In the first part of this work, we report the first comprehensive study of the effects of HDAC 1- 11 inhibitors on innate immune responses in vitro and in vivo. Strikingly, expression studies revealed that HDAC1-11 inhibitors act essentially as negative regulators of basal and microbial product- induced expression of critical immune receptors and antimicrobial products by mouse and human innate immune cells like macrophages and dendritic cells. Furthermore, we describe a new molecular mechanism whereby HDAC1-11 inhibitors repress pro-inflammatory cytokine expression through the induction of the expression and the activity of the transcriptional repressor Μί-2β. HDAC1-11 inhibitors also impair the potential of macrophages to engulf and kill bacteria. Finally, mice treated with an HDAC inhibitor are more susceptible to non-severe bacterial and fungal infection, but are protected against toxic and septic shock. Altogether these data support the concept that HDAC 1-11 inhibitors have potent anti-inflammatory and immunomodulatory activities in vitro and in vivo.Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a central role in innate immune responses, cell proliferation and oncogenesis. In the second part of this manuscript, we demonstrate that HDAC1-11 inhibitors inhibit MIF expression in vitro and in vivo and describe a novel molecular mechanism accounting for these effects. We propose that inhibition of MIF expression by HDAC 1-11 inhibitors may contribute to the antitumorigenic and anti-inflammatory effects of these drugs.NAD+ is an essential cofactor of sirtuins activity and one of the major sources of energy within the cells. Therefore, sirtuins link deacetylation to NAD+ metabolism and energy status. In the last part of this thesis, we report preliminary results indicating that a pharmacological inhibitor of SIRT1-2 drastically decreases pro-inflammatory cytokine production (RNA and protein) and interferes with MAP kinase intracellular signal transduction pathway in macrophages. Moreover, administration of the SIRT1-2 inhibitor protects mice from lethal endotoxic shock and septic shock.Overall, our studies demonstrate that inhibitors of HDAC1-11 and sirtuins are powerful anti-inflammatory molecules. Given their profound negative impact on the host antimicrobial defence response, these inhibitors might increase the susceptibility to opportunistic infections, especially in immunocompromised cancer patients. Yet, these inhibitors might be useful to control the inflammatory response in severely ill septic patients or in patients suffering from chronic inflammatory diseases.
Resumo:
BACKGROUND: Myocardial contractile failure in septic shock may develop following direct interactions, within the heart itself, between molecular motifs released by pathogens and their specific receptors, notably those belonging to the toll-like receptor (TLR) family. Here, we determined the ability of bacterial flagellin, the ligand of mammalian TLR5, to trigger myocardial inflammation and contractile dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: TLR5 expression was determined in H9c2 cardiac myoblasts, in primary rat cardiomyocytes, and in whole heart extracts from rodents and humans. The ability of flagellin to activate pro-inflammatory signaling pathways (NF-kappaB and MAP kinases) and the expression of inflammatory cytokines was investigated in H9c2 cells, and, in part, in primary cardiomyocytes, as well as in the mouse myocardium in vivo. The influence of flagellin on left ventricular function was evaluated in mice by a conductance pressure-volume catheter. Cardiomyocytes and intact myocardium disclosed significant TLR5 expression. In vitro, flagellin activated NF-kappaB, MAP kinases, and the transcription of inflammatory genes. In vivo, flagellin induced cardiac activation of NF-kappaB, expression of inflammatory cytokines (TNF alpha, IL-1 beta, IL-6, MIP-2 and MCP-1), and provoked a state of reversible myocardial dysfunction, characterized by cardiac dilation, reduced ejection fraction, and decreased end-systolic elastance. CONCLUSION/SIGNIFICANCE: These results are the first to indicate that flagellin has the ability to trigger cardiac innate immune responses and to acutely depress myocardial contractility.