164 resultados para Hepatic
Resumo:
OBJECTIVE: To assess whether breath acetone concentration can be used to monitor the effects of a prolonged physical activity on whole body lipolysis and hepatic ketogenesis in field conditions. METHODS: Twenty-three non-diabetic, 11 type 1 diabetic, and 17 type 2 diabetic subjects provided breath and blood samples for this study. Samples were collected during the International Four Days Marches, in the Netherlands. For each participant, breath acetone concentration was measured using proton transfer reaction ion trap mass spectrometry, before and after a 30-50 km walk on four consecutive days. Blood non-esterified free fatty acid (NEFA), beta-hydroxybutyrate (BOHB), and glucose concentrations were measured after walking. RESULTS: Breath acetone concentration was significantly higher after than before walking, and was positively correlated with blood NEFA and BOHB concentrations. The effect of walking on breath acetone concentration was repeatedly observed on all four consecutive days. Breath acetone concentrations were higher in type 1 diabetic subjects and lower in type 2 diabetic subjects than in control subjects. CONCLUSIONS: Breath acetone can be used to monitor hepatic ketogenesis during walking under field conditions. It may, therefore, provide real-time information on fat burning, which may be of use for monitoring the lifestyle interventions.
Resumo:
PURPOSE: This randomized phase II trial evaluated two docetaxel-based regimens to see which would be most promising according to overall response rate (ORR) for comparison in a phase III trial with epirubicin-cisplatin-fluorouracil (ECF) as first-line advanced gastric cancer therapy. PATIENTS AND METHODS: Chemotherapy-naïve patients with measurable unresectable and/or metastatic gastric carcinoma, a performance status <or= 1, and adequate hematologic, hepatic, and renal function randomly received <or= eight 3-weekly cycles of ECF (epirubicin 50 mg/m(2) on day 1, cisplatin 60 mg/m(2) on day 1, and fluorouracil [FU] 200 mg/m(2)/d on days 1 to 21), TC (docetaxel initially 85 mg/m(2) on day 1 [later reduced to 75 mg/m(2) as a result of toxicity] and cisplatin 75 mg/m(2) on day 1), or TCF (TC plus FU 300 mg/m(2)/d on days 1 to 14). Study objectives included response (primary), survival, toxicity, and quality of life (QOL). RESULTS: ORR was 25.0% (95% CI, 13% to 41%) for ECF, 18.5% (95% CI, 9% to 34%) for TC, and 36.6% (95% CI, 23% to 53%) for TCF (n = 119). Median overall survival times were 8.3, 11.0, and 10.4 months for ECF, TC, and TCF, respectively. Toxicity was acceptable, with one toxic death (TC arm). Grade 3 or 4 neutropenia occurred in more treatment cycles with docetaxel (TC, 49%; TCF, 57%; ECF, 34%). Global health status/QOL substantially improved with ECF and remained similar to baseline with both docetaxel regimens. CONCLUSION: Time to response and ORR favor TCF over TC for further evaluation, particularly in the neoadjuvant setting. A trend towards increased myelosuppression and infectious complications with TCF versus TC or ECF was observed.
Resumo:
BACKGROUND/AIMS: Alveolar echinococcosis (AE) is a serious liver disease. The aim of this study was to explore the long-term prognosis of AE patients, the burden of this disease in Switzerland and the cost-effectiveness of treatment. METHODS: Relative survival analysis was undertaken using a national database with 329 patient records. 155 representative cases had sufficient details regarding treatment costs and patient outcome to estimate the financial implications and treatment costs of AE. RESULTS: For an average 54-year-old patient diagnosed with AE in 1970 the life expectancy was estimated to be reduced by 18.2 and 21.3 years for men and women, respectively. By 2005 this was reduced to approximately 3.5 and 2.6 years, respectively. Patients undergoing radical surgery had a better outcome, whereas the older patients had a poorer prognosis than the younger patients. Costs amount to approximately Euro108,762 per patient. Assuming the improved life expectancy of AE patients is due to modern treatment the cost per disability-adjusted life years (DALY) saved is approximately Euro6,032. CONCLUSIONS: Current treatments have substantially improved the prognosis of AE patients compared to the 1970s. The cost per DALY saved is low compared to the average national annual income. Hence, AE treatment is highly cost-effective in Switzerland.
Resumo:
Alveolar echinococcosis is an invasive, tumor-like zoonosis, accidentally transmitted to humans. We present a case of recurrent inferior vena cava (IVC) syndrome due to alveolar echinococcosis and strongly suspected on transthoracic echocardiographic examination.
Resumo:
BACKGROUND & AIMS: n-3 fatty acids are expected to downregulate the inflammatory responses, and hence may decrease insulin resistance. On the other hand, n-3 fatty acid supplementation has been reported to increase glycemia in type 2 diabetes. We therefore assessed the effect of n-3 fatty acids delivered with parenteral nutrition on glucose metabolism in surgical intensive care patients. METHODS: Twenty-four surgical intensive care patients were randomized to receive parenteral nutrition providing 1.25 times their fasting energy expenditure, with 0.25 g of either an n-3 fatty acid enriched-or a soy bean-lipid emulsion. Energy metabolism, glucose production, gluconeogenesis and hepatic de novo lipogenesis were evaluated after 4 days. RESULTS: Total energy expenditure was significantly lower in patients receiving n-3 fatty acids (0.015+/-0.001 vs. 0.019+/-0.001 kcal/kg/min with soy bean lipids (P<0.05)). Glucose oxidation, lipid oxidation, glucose production, gluconeogenesis, hepatic de novo lipogenesis, plasma glucose, insulin and glucagon concentrations did not differ (all P>0.05) in the 2 groups. CONCLUSIONS: n-3 fatty acids were well tolerated in this group of severely ill patients. They decreased total energy expenditure without adverse metabolic effects.
Resumo:
Proline- and acid-rich (PAR) basic region leucine zipper (bZIP) proteins thyrotroph embryonic factor (TEF), D-site-binding protein (DBP), and hepatic leukemia factor have been involved in neurotransmitter homeostasis and amino acid metabolism. Here we demonstrate a novel role for these proteins in the transcriptional control of a BH3-only gene. PAR bZIP proteins are able to transactivate the promoter of bcl-gS. This promoter is particularly responsive to TEF activation and is silenced by NFIL3, a repressor that shares the consensus binding site with PAR bZIP proteins. Consistently, transfection of TEF induces the expression of endogenous bcl-gS in cancer cells, and this induction is independent of p53. A naturally occurring variant of DBP (tDBP), lacking the transactivation domain, has been identified and shown to impede the formation of active TEF dimers in a competitive manner and to reduce the TEF-dependent induction of bcl-gS. Of note, treatment of cancer cells with etoposide induces TEF activation and promotes the expression of bcl-gS. Furthermore, blockade of bcl-gS or TEF expression by a small interfering RNA strategy or transfection with tDBP significantly reduces the etoposide-mediated apoptotic cell death. These findings represent the first described role for PAR bZIP proteins in the regulation of a gene involved in the execution of apoptosis.
Resumo:
A 46-year-old man underwent radiofrequency (RF) ablation of three liver metastases 7 months after undergoing right colectomy for a pT2N0Mx colon adenocarcinoma. Three months after the procedure, he developed hepatic abscesses related to a fistula between the distal ileum and segment V biliary branches.
Resumo:
In mammals, many aspects of metabolism are under circadian control. At least in part, this regulation is achieved by core-clock or clock-controlled transcription factors whose abundance and/or activity oscillate during the day. The clock-controlled proline- and acidic amino acid-rich domain basic leucine zipper proteins D-site-binding protein, thyrotroph embryonic factor, and hepatic leukemia factor have previously been shown to participate in the circadian control of xenobiotic detoxification in liver and other peripheral organs. Here we present genetic and biochemical evidence that the three proline- and acidic amino acid-rich basic leucine zipper proteins also play a key role in circadian lipid metabolism by influencing the rhythmic expression and activity of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). Our results suggest that, in liver, D-site-binding protein, hepatic leukemia factor, and thyrotroph embryonic factor contribute to the circadian transcription of genes specifying acyl-CoA thioesterases, leading to a cyclic release of fatty acids from thioesters. In turn, the fatty acids act as ligands for PPARα, and the activated PPARα receptor then stimulates the transcription of genes encoding proteins involved in the uptake and/or metabolism of lipids, cholesterol, and glucose metabolism.
Resumo:
DBP (albumin D-site-binding protein), HLF (hepatic leukemia factor), and TEF (thyrotroph embryonic factor) are the three members of the PAR bZip (proline and acidic amino acid-rich basic leucine zipper) transcription factor family. All three of these transcriptional regulatory proteins accumulate with robust circadian rhythms in tissues with high amplitudes of clock gene expression, such as the suprachiasmatic nucleus (SCN) and the liver. However, they are expressed at nearly invariable levels in most brain regions, in which clock gene expression only cycles with low amplitude. Here we show that mice deficient for all three PAR bZip proteins are highly susceptible to generalized spontaneous and audiogenic epilepsies that frequently are lethal. Transcriptome profiling revealed pyridoxal kinase (Pdxk) as a target gene of PAR bZip proteins in both liver and brain. Pyridoxal kinase converts vitamin B6 derivatives into pyridoxal phosphate (PLP), the coenzyme of many enzymes involved in amino acid and neurotransmitter metabolism. PAR bZip-deficient mice show decreased brain levels of PLP, serotonin, and dopamine, and such changes have previously been reported to cause epilepsies in other systems. Hence, the expression of some clock-controlled genes, such as Pdxk, may have to remain within narrow limits in the brain. This could explain why the circadian oscillator has evolved to generate only low-amplitude cycles in most brain regions.
Resumo:
Background: Infection with the hepatitis C virus (HCV) i s associatedwith hepatic iron accumulation. We performed a comprehensive analysisof serum ferritin levels and of their genetic determinants in thepathogenesis and treatment of patients with chronic hepatitis C enrolledin the Swiss Hepatitis C Cohort Study (SCCS).Methods: Serum ferritin levels at baseline o f therapy with p egylatedinterferon-α ( PEG-IFN-α) and ribavirin or b efore liver biopsy werecorrelated with clinical features of c hronic HCV infection, includingnecroinflammatory activity (N=970), fibrosis (N=980), steatosis (N=886)and response to treatment (N=876). The association b etween highferritin levels (> median) and the endpoints w as assessed b y logisticregression. In addition, a candidate gene analysis as well as a genomewideassociation study (GWAS) of serum ferritin levels were performed.Results: S erum ferritin > sex-specific median was one of the strongestpre-treatment predictors of failure to achieve SVR (P<0.0001, OR=0.46,95% CI=0.34-0.60). This association remained highly significant in amultivariate analysis (P=0.0001, OR=0.32, 95% CI=0.18-0.57), with anodds ratio c omparable to that of IL28B g enotype, and persisted afteradjustment for duration of infection. Additional independent predictors ofnonresponse were viral load, HCV genotype, presence of diabetes, andliver fibrosis stage. Higher serum ferritin levels were also independentlyassociated with severe liver fibrosis (P<0.0001, OR=2.67, 95% CI=1.66-4.28) a nd steatosis (P=0.0034, OR=2.34, 95% CI=1.33-4.12), but n otwith necroinflammatory a ctivity (P=0.3). No significant g eneticdeterminants of serum ferritin levels were identified.Conclusions: Elevated serum ferritin levels are associated withadvanced liver fibrosis, hepatic steatosis, and poor r esponse to IFN-α-based therapy in c hronic hepatitis C, i ndependently from IL28Bgenotype.
Resumo:
BACKGROUND AIMS: Marked changes in metabolism, including liver steatosis and hypoglycemia, occur after partial hepatectomy. Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a nuclear hormone receptor that is activated by fatty acids and involved in hepatic fatty acid metabolism and regeneration. Liver fatty acid binding protein (LFABP) is an abundant protein in liver cytosol whose expression is regulated by PPAR alpha. It is involved in fatty acid uptake and diffusion and in PPAR alpha signaling. The aim of this study was to investigate the expression of PPAR alpha and LFABP during liver regeneration. METHODS: Male Sprague-Dawley rats and male C57 Bl/6 mice were subjected to 2/3 hepatectomy and LFABP and PPAR alpha mRNA and protein levels were measured at different time points after surgery. The effect of partial hepatectomy was followed during 48 h in rats and 72 h in mice. RESULTS: PPAR alpha mRNA and protein levels were decreased 26 h after hepatectomy of rats. The LFABP mRNA and protein levels paralleled those of PPAR alpha and were also decreased 26 h after hepatectomy. In mice, the mRNA level was decreased after 36 and 72 h after hepatectomy. In this case, LFABP mRNA levels decreased more slowly after partial hepatectomy than in rats. CONCLUSIONS: A marked decrease in PPAR alpha expression may be important for changed gene expression, e.g. LFABP, and metabolic changes, such as hypoglycemia, during liver regeneration.
Resumo:
High fructose consumption is associated with obesity and characteristics of metabolic syndrome. This includes insulin resistance, dyslipidemia, type II diabetes and hepatic steatosis, the hepatic component of metabolic syndrome. Short term high fructose consumption in healthy humans is considered as a study model to increase intrahepatocellular lipids (IHCL). Protein supplementation added to a short term high fructose diet exerts a protective role on hepatic fat accumulation. Fructose disposal after an acute fructose load is well established. However, fructose disposal is usually studied when a high intake of fructose is ingested. Interaction of fructose with other macronutrients on fructose disposal is not clearly established. We wanted to assess how fructose disposal is modulated with nutritional factors. For the first study, we addressed the question of how would essential amino acid (EAA) supplemented to a high fructose diet have an impact on hepatic fat accumulation? We tried to distinguish which metabolic pathways were responsible for the increase in IHCL induced by high fructose intake and how those pathways would be modulated by EAA. After 6 days of hypercaloric high fructose diet, we observed, as expected an increase in IHCL modulated by an increase in VLDL-triglycerides and an increase in VLDL-13C-palmitate production. When adding a supplementation in EAA, we observed a decrease in IHCL but we could not define which mechanism was responsible for this process. With the second study, we were interested to observe fructose disposal after a test meal that contained lipid, protein and a physiologic dose of fructose co-ingested or not with glucose. When ingested with other macronutrients, hepatic fructose disposal is similar as when ingested as pure fructose. It induced oxidation, gluconeogenesis followed by glycogen synthesis, conversion into lactate and to a minor extent by de novo lipogenesis. When co- ingested with glucose decreased fructose oxidation as well as gluconeogenesis and an increased glycogen synthesis without affecting de novo lipogenesis or lactate. We were also able to observe induction of intestinal de novo lipogenesis with both fructose and fructose co- ingested with glucose. In summary, essential amino acids supplementation blunted increase in hepatic fat content induced by a short term chronic fructose overfeeding. However, EAA failed to improve other cardiovascular risk factors. Under isocaloric condition and in the frame of an acute test meal, physiologic dose of fructose associated with other macronutrients led to the same fructose disposal as when fructose is ingested alone. When co-ingested with glucose, we observed a decrease in fructose oxidation and gluconeogenesis as well as an increased in glycogen storage without affecting other metabolic pathways. - Une consommation élevée en fructose est associée à l'obésité et aux caractéristiques du syndrome métabolique. Ces dernières incluent une résistance à l'insuline, une dyslipidémie, un diabète de type II et la stéatose hépatique, composant hépatique du syndrome métabolique. À court terme une forte consommation en fructose chez l'homme sain est considérée comme un modèle d'étude pour augmenter la teneur en graisse hépatique. Une supplémentation en protéines ajoutée à une alimentation riche en fructose de courte durée a un effet protecteur sur l'accumulation des graisses au niveau du foie. Le métabolisme du fructose après une charge de fructose aiguë est bien établi. Toutefois, ce dernier est généralement étudié quand une consommation élevée de fructose est donnée. L'interaction du fructose avec d'autres macronutriments sur le métabolisme du fructose n'est pas connue. Nous voulions évaluer la modulation du métabolisme du fructose par des facteurs nutritionnels. Pour la première étude, nous avons abordé la question de savoir quel impact aurait une supplémentation en acides aminés essentiels (AEE) associé à une alimentation riche en fructose sur l'accumulation des graisses hépatiques. Nous avons essayé de distinguer les voies métaboliques responsables de l'augmentation des graisses hépatiques induite par l'alimentation riche en fructose et comment ces voies étaient modulées par les AEE. Après 6 jours d'une alimentation hypercalorique riche en fructose, nous avons observé, comme attendu, une augmentation des graisses hépatiques modulée par une augmentation des triglycérides-VLDL et une augmentation de la production de VLDL-13C-palmitate. Lors de la supplémentation en AEE, nous avons observé une diminution des graisses hépatiques mais les mécanismes responsables de ce processus n'ont pas pu être mis en évidence. Avec la seconde étude, nous nous sommes intéressés à observer le métabolisme du fructose après un repas test contenant des lipides, des protéines et une dose physiologique de fructose co-ingéré ou non avec du glucose. Lorsque le fructose était ingéré avec les autres macronutriments, le devenir hépatique du fructose était similaire à celui induit par du fructose pur. Il a induit une oxydation, suivie d'une néoglucogenèses, une synthèse de glycogène, une conversion en lactate et dans une moindre mesure une lipogenèse de novo. Lors de la co-ngestion avec du glucose, nous avons observé une diminution de l'oxydation du fructose et de la néoglucogenèse et une augmentation de la synthèse du glycogène, sans effet sur la lipogenèse de novo ni sur le lactate. Nous avons également pu mettre en évidence que le fructose et le fructose ingéré de façon conjointe avec du glucose ont induit une lipogenèse de novo au niveau de l'intestin. En résumé, la supplémentation en acides aminés essentiels a contrecarré l'augmentation de la teneur en graisse hépatique induite par une suralimentation en fructose sur le court terme. Cependant, la supplémentation en AEE a échoué à améliorer d'autres facteurs de risque cardiovasculaires. Dans la condition isocalorique et dans le cadre d'un repas test aiguë, la dose physiologique de fructose associée à d'autres macronutriments a conduit aux mêmes aboutissants du métabolisme du fructose que lorsque le fructose est ingéré seul. Lors de la co-ngestion avec le glucose, une diminution de l'oxydation du fructose est de la néoglucogenèse est observée en parallèle à une augmentation de la synthèse de glycogène sans affecter les autres voies métaboliques.
Resumo:
Chronic disorders, such as obesity, diabetes, inflammation, non-alcoholic fatty liver disease and atherosclerosis, are related to alterations in lipid and glucose metabolism, in which peroxisome proliferator-activated receptors (PPAR)α, PPARβ/δ and PPARγ are involved. These receptors form a subgroup of ligand-activated transcription factors that belong to the nuclear hormone receptor family. This review discusses a selection of novel PPAR functions identified during the last few years. The PPARs regulate processes that are essential for the maintenance of pregnancy and embryonic development. Newly found hepatic functions of PPARα are the mediation of female-specific gene repression and the protection of the liver from oestrogen induced toxicity. PPARα also controls lipid catabolism and is the target of hypolipidaemic drugs, whereas PPARγ controls adipocyte differentiation and regulates lipid storage; it is the target for the insulin sensitising thiazolidinediones used to treat type 2 diabetes. Activation of PPARβ/δ increases lipid catabolism in skeletal muscle, the heart and adipose tissue. In addition, PPARβ/δ ligands prevent weight gain and suppress macrophage derived inflammation. In fact, therapeutic benefits of PPAR ligands have been confirmed in inflammatory and autoimmune diseases, such as encephalomyelitis and inflammatory bowel disease. Furthermore, PPARs promote skin wound repair. PPARα favours skin healing during the inflammatory phase that follows injury, whilst PPARβ/δ enhances keratinocyte survival and migration. Due to their collective functions in skin, PPARs represent a major research target for our understanding of many skin diseases. Taken altogether, these functions suggest that PPARs serve as physiological sensors in different stress situations and remain valuable targets for innovative therapies.
Resumo:
Les hépatopathies sont rares au cours de la grossesse, mais peuvent avoir des conséquences dramatiques pour la mère et l'enfant si elles ne sont pas diagnostiquées à temps. On différencie principalement les hépatopathies spécifiquement secondaires à la grossesse des intercurrentes. Parmi les premières, on peut citer les manifestations hépatiques de l'hyperemesis gravidarum, la cholestase intrahépatique gravidique, les atteintes hépatiques lors d'une (pré-)éclampsie, y compris le syndrome HELLP, et la stéatose hépatique aiguë gravidique. Le diagnostic différentiel est basé sur l'anamnèse (stade de la grossesse), la clinique, quelques examens de laboratoire et l'échographie comme imagerie de première intention. Le traitement d'une cholestase intrahépatique gravidique par acide ursodésoxycholique améliore le prurit et les tests hépatiques maternels. Une surveillance rapprochée de la grossesse reste cependant indispensable. Lors d'un syndrome HELLP ou d'une stéatose hépatique aiguë gravidique, il faut procéder à l'accouchement le plus vite possible. Toutes les hépatopathies déjà connues nécessitent un suivi strict durant la grossesse. While liver diseases are a rare occurrence in pregnancy, they may have dramatic implications for mother and child if not detected in good time. A distinction is drawn between pregnancy-specific liver diseases and intercurrent liver diseases during pregnancy. The former include hepatic manifestations of hyperemesis gravidarum, intrahepatic cholestasis of pregnancy, hepatic involvement in preeclampsia or eclampsia, including the HELLP syndrome, and acute fatty liver of pregnancy. Differential diagnosis of pregnancy-associated liver disorders is based on history (stage of pregnancy), clinical findings, a few laboratory tests and ultrasound as the primary imaging technique. Treatment of intrahepatic cholestasis of pregnancy with ursodeoxycholic acid improves pruritus and maternal liver tests. Close monitoring of pregnancy remains however indispensable. In HELLP syndrome and acute fatty liver of pregnancy the aim should be rapid delivery. Preexisting liver diseases require intensified monitoring during pregnancy.