147 resultados para Factor Xa-like Protease
Resumo:
A novel member of the tumor necrosis factor (TNF) receptor family, designated TRAMP, has been identified. The structural organization of the 393 amino acid long human TRAMP is most homologous to TNF receptor 1. TRAMP is abundantly expressed on thymocytes and lymphocytes. Its extracellular domain is composed of four cysteine-rich domains, and the cytoplasmic region contains a death domain known to signal apoptosis. Overexpression of TRAMP leads to two major responses, NF-kappaB activation and apoptosis. TRAMP-induced cell death is inhibited by an inhibitor of ICE-like proteases, but not by Bcl-2. In addition, TRAMP does not appear to interact with any of the known apoptosis-inducing ligands of the TNF family.
Resumo:
Background: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity (MAVS and TRIF) as well as a phosphatase involved in growth factor signaling (TC-PTP). The aim of this study was to identify novel cellular substrates of the NS3-4A protease and to investigate their role in the life cycle and pathogenesis of HCV. Methods: Cell lines inducibly expressing the NS3-4A protease were analyzed in basal as well as interferon- α -stimulated states by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. Candidates fulfilling strin- gent criteria for potential substrates or products of the NS3-4A protease were further investigated in different experimental sys- tems as well as in liver biopsies from patients with chronic hep- atitis C. Results: SILAC coupled with protein separation and mass spectrometry yielded > 5000 proteins of which 21 can- didates were selected for further analyses. These allowed us to identify GPx8, a membrane-associated peroxidase involved in disulfide bond formation in the endoplasmic reticulum, as a novel cellular substrate of the HCV NS3-4A protease. Cleavage occurs at cysteine in position 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic hepatitis C. Further functional studies, involving overexpression and RNA silencing, revealed that GPx8 is a proviral factor involved in viral particle production but not in HCV entry or RNA replica- tion. Conclusions: GPx8 is a proviral host factor cleaved by the HCV NS3-4A protease. Studies investigating the consequences of cleavage for GPx8 function are underway. The identification of novel cellular substrates of the HCV NS3-4A protease should yield new insights into the HCV life cycle and the pathogenesis of hepatitis C and may reveal novel angles for therapeutic inter- vention.
Resumo:
OBJECTIVES: To evaluate the influence of genetic polymorphisms on the susceptibility to Candida colonization and intra-abdominal candidiasis, a blood culture-negative life-threatening infection in high-risk surgical ICU patients. DESIGN: Prospective observational cohort study. SETTING: Surgical ICUs from two University hospitals of the Fungal Infection Network of Switzerland. PATIENTS: Eighty-nine patients at high risk for intra-abdominal candidiasis (68 with recurrent gastrointestinal perforation and 21 with acute necrotizing pancreatitis). MEASUREMENTS AND MAIN RESULTS: Eighteen single-nucleotide polymorphisms in 16 genes previously associated with development of fungal infections were analyzed from patient's DNA by using an Illumina Veracode genotyping platform. Candida colonization was defined by recovery of Candida species from at least one nonsterile site by twice weekly monitoring of cultures from oropharynx, stools, urine, skin, and/or respiratory tract. A corrected colonization index greater than or equal to 0.4 defined "heavy" colonization. Intra-abdominal candidiasis was defined by the presence of clinical symptoms and signs of peritonitis or intra-abdominal abscess and isolation of Candida species either in pure or mixed culture from intraoperatively collected abdominal samples. Single-nucleotide polymorphisms in three innate immune genes were associated with development of a Candida corrected colonization index greater than or equal to 0.4 (Toll-like receptor rs4986790, hazard ratio = 3.39; 95% CI, 1.45-7.93; p = 0.005) or occurrence of intra-abdominal candidiasis (tumor necrosis factor-α rs1800629, hazard ratio = 4.31; 95% CI, 1.85-10.1; p= 0.0007; β-defensin 1 rs1800972, hazard ratio = 3.21; 95% CI, 1.36-7.59; p = 0.008). CONCLUSION: We report a strong association between the promoter rs1800629 single-nucleotide polymorphism in tumor necrosis factor-α and an increased susceptibility to intra-abdominal candidiasis in a homogenous prospective cohort of high-risk surgical ICU patients. This finding highlights the relevance of the tumor necrosis factor-α functional polymorphism in immune response to fungal pathogens. Immunogenetic profiling in patients at clinical high risk followed by targeted antifungal interventions may improve the prevention or preemptive management of this life-threatening infection.
Resumo:
Summary : The skin is a complex organ that protects the body against entry of pathogens and supplies a relatively dry and impermeable barrier to water loss. This barrier function is mainly provided by the epidermis, which is the outermost layer of the skin. Serine proteases are involved in skin physiology and it is known that mutations or alterations in their expression can lead to skin diseases. In order to investigate the importance of the regulated expression of CAPI/Prss8, a membrane bound serine protease expressed in the epidermis, we developed transgenic mice ectopically expressing CAPI/Prss8 in the skin. These animals exhibited a phenotype characterized by scaly skin, epidermal hypertrophy, inflammation and scratching behavior. This phenotype could be completely abolished in mice lacking the proteinase activated receptor 2 (PAR2) revealing PAR2 as a potential in vivo downstream target of CAP 1 /Prss8. We could also provide evidence of a CAP1 /Prss8 function independent of its catalytic activity. Additionally, mice ectopically expressing PAR2 in the skin developed a skin phenotype very similar to CAPI/Prss8 transgenic animals, supporting the hypothesis of PAR2 activation by CAPI/Prss8. We could furthermore demonstrate an inhibitory effect of the serine protease inhibitor nexin-I on CAPI/Prss8, since nexin-1 transgenic expression negated the skin phenotype observed in CAPI/Prss8 transgenic mice. CAP1/Prss8 and PAR2 transgenic animals, and the understanding of the interaction between CAPl/Prss8 and PAR2, can be helpful in developing potential CAPI/Prss8 and PAR2 inhibitory molecules that may be used as drugs to treat ichthyoses-like skin diseases. Résumé : La peau est un organe complexe qui protège le corps contre l'entrée des pathogènes et forme une barrière imperméable qui empêche la déshydratation. Cette fonction de barrière est surtout fournie par l'épiderme, la couche la plus superficielle de la peau. Le bon fonctionnement de cet organe est permis, entre autres, par les protéases à sérine qui sont des enzymes dont l'altération peut causer des maladies de la peau. Pour étudier l'importance de la régulation de CAP1/Prss8, une protéase à sérine exprimée au niveau de l'épiderme, des souris génétiquement modifiées, dans lesquelles CAP1/Prss8 est exprimé d'une manière ectopique dans la peau, ont été générées. Les animaux transgéniques pour CAP1/Prss8 présentent une peau squameuse, un épiderme hypertrophique, des processus inflammatoires et se grattent. Ce phénotype a pu être complètement guéri lorsque le gène de PAR2, un récepteur qui règle l'activité des cellules de l'épiderme, est inactivé chez la souris. Ceci montre que PAR2 est une cible de CAP1/Prss8 dans le système étudié. Des études expérimentales suggèrent de plus que l'effet de CAP1/Prss8 dans ce modèle ne dépend pas de son activité enzymatique. En dernière analyse, il a été démontré que l'expression transgénique de nexin-1, un inhibiteur des protéases à sérine exprimé dans la peau, a la capacité d'améliorer la peau squameuse et l'épiderme hypertrophique causés par CAP1/Prss8 transgénique. Les animaux transgéniques pour CAP1/Prss8 et PAR2, et la compréhension du mécanisme d'interaction entre eux, pourraient aider à développer et à tester des molécules inhibitrices de CAP1 /Prss8 et PARI qui pourraient alors être utilisées comme médicaments pour traiter des maladies de la peau comme les ichthyoses.
Resumo:
The TNF family ligand B cell-activating factor (BAFF, BLyS, TALL-1) is an essential factor for B cell development. BAFF binds to three receptors, BAFF-R, transmembrane activator and CAML interactor (TACI), and B cell maturation antigen (BCMA), but only BAFF-R is required for successful survival and maturation of splenic B cells. To test whether the effect of BAFF is due to the up-regulation of anti-apoptotic factors, TACI-Ig-transgenic mice, in which BAFF function is inhibited, were crossed with transgenic mice expressing FLICE-inhibitory protein (FLIP) or Bcl-2 in the B cell compartment. FLIP expression did not rescue B cells, while enforced Bcl-2 expression restored peripheral B cells and the ability to mount T-dependent antibody responses. However, many B cells retained immaturity markers and failed to express normal amounts of CD21. Marginal zone B cells were not restored and the T-independent IgG3, but not IgM, response was impaired in the TACI-IgxBcl-2 mice. These results suggest that BAFF is required not only to inhibit apoptosis of maturating B cells, but also to promote differentiation events, in particular those leading to the generation of marginal zone B cells.
Resumo:
Loss-of-function mutations in human profilaggrin gene have been identified as the cause of ichthyosis vulgaris (IV), and as a major predisposition factor for atopic dermatitis (AD). Similarly, flaky tail (a/a ma ft/ma ft/J) mice were described as a model for IV, and shown to be predisposed to eczema. The aim of this study was to correlate the flaky tail mouse phenotype with human IV and AD, in order to dissect early molecular events leading to atopic dermatitis in mice and men, suffering from filaggrin deficiency. Thus, 5-days old flaky tail pups were analyzed histologically, expression of cytokines was measured in skin and signaling pathways were investigated by protein analysis. Human biopsies of IV and AD patients were analyzed histologically and by real time PCR assays. Our data show acanthosis and hyperproliferation in flaky tail epidermis, associated with increased IL1β and thymic stromal lymphopoietin (TSLP) expression, and Th2-polarization. Consequently, NFκB and Stat pathways were activated, and IL6 mRNA levels were increased. Further, quantitative analysis of late epidermal differentiation markers revealed increased Small proline-rich protein 2A (Sprr2a) synthesis. Th2-polarization and Sprr2a increase may result from high TSLP expression, as shown after analysis of 5-days old K14-TSLP tg mouse skin biopsies. Our findings in the flaky tail mouse correlate with data obtained from patient biopsies of AD, but not IV. We propose that proinflammatory cytokines are responsible for acanthosis in flaky tail epidermis, and together with the Th2-derived cytokines lead to morphological changes. Accordingly, the a/a ma ft/ma ft/J mouse model can be used as an appropriate model to study early AD onset associated with profilaggrin deficiency.
Resumo:
AKAP-Lbc is a member of the A-kinase anchoring protein (AKAP) family that has been recently associated with the development of pathologies, such as cardiac hypertrophy and cancer. We have previously demonstrated that, at the molecular level, AKAP-Lbc functions as a guanine nucleotide exchange factor (GEF) that promotes the specific activation of RhoA. In the present study, we identified the ubiquitin-like protein LC3 as a novel regulatory protein interacting with AKAP-Lbc. Mutagenesis studies revealed that LC3, through its NH(2)-terminal alpha-helical domain, interacts with two binding sites located within the NH(2)-terminal regulatory region of AKAP-Lbc. Interestingly, LC3 overexpression strongly reduced the ability of AKAP-Lbc to interact with RhoA, profoundly impairing the Rho-GEF activity of the anchoring protein and, as a consequence, its ability to promote cytoskeletal rearrangements associated with the formation of actin stress fibers. Moreover, AKAP-Lbc mutants that fail to interact with LC3 show a higher basal Rho-GEF activity as compared with the wild type protein and become refractory to the inhibitory effect of LC3. This suggests that LC3 binding maintains AKAP-Lbc in an inactive state that displays a reduced ability to promote downstream signaling. Collectively, these findings provide evidence for a previously uncharacterized role of LC3 in the regulation of Rho signaling and in the reorganization of the actin cytoskeleton.
Resumo:
The transcription factor serum response factor (SRF) plays a crucial role in the development of several organs. However, its role in the skin has not been explored. Here, we show that keratinocytes in normal human and mouse skin expressed high levels of SRF but that SRF expression was strongly downregulated in the hyperproliferative epidermis of wounded and psoriatic skin. Keratinocyte-specific deletion within the mouse SRF locus during embryonic development caused edema and skin blistering, and all animals died in utero. Postnatal loss of mouse SRF in keratinocytes resulted in the development of psoriasis-like skin lesions. These lesions were characterized by inflammation, hyperproliferation, and abnormal differentiation of keratinocytes as well as by disruption of the actin cytoskeleton. Ultrastructural analysis revealed markedly reduced cell-cell and cell-matrix contacts and loss of cell compaction in all epidermal layers. siRNA-mediated knockdown of SRF in primary human keratinocytes revealed that the cytoskeletal abnormalities and adhesion defects were a direct consequence of the loss of SRF. In contrast, the hyperproliferation observed in vivo was an indirect effect that was most likely a consequence of the inflammation. These results reveal that loss of SRF disrupts epidermal homeostasis and strongly suggest its involvement in the pathogenesis of hyperproliferative skin diseases, including psoriasis.
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.
Resumo:
Résumé La voie de signalisation de Wnt est extrêmement conservée au cours de l'évolution. Les protéines Wnt sont des molécules sécrétées qui se lient à la famille de récepteurs Frizzled. Cette interaction mène à la stabilisation de la protéine β-caténine, qui va s'accumuler dans le cytoplasme puis migrer dans le noyau où elle peut s'hétérodimériser avec les facteurs de transcription de la famille TCF/LEF. Il a été démontré que cette voie de signalisation joue un rôle important durant la lymphopoïèse et de récents résultats suggèrent un rôle clé de cette voie dans le renouvellement des Cellules Souches Hématopoïétique (CSH). Des études se basant sur un système de surexpression de protéines montrent clairement que la voie Wnt peut influencer l'hématopoïèse. Cependant, le rôle de la protéine β-caténine dans le système hématopoïétique n'a jamais été testé directement. Ce projet de thèse se propose d'étudier la fonction de la protéine β-caténine par sa délétion inductible via le système Cre-loxP. De façon surprenante, nous avons pu démontrer que les progéniteurs de la moelle osseuse, déficients en β-caténine, ne montrent aucune altération dans leur capacité à s'auto-renouveler et/ou à reconstituer toutes les lignées hématopoïétiques (myéloïde, érythroïde et lymphoïde) dans les souris-chimères. De plus, le développement, la survie des thymocytes ainsi que la prolifération des cellules T périphériques induite par un antigène, sont indépendants de β-caténine. Ces résultats suggèrent soit que la protéine β-caténine ne joue pas un rôle primordial dans le système hématopoiétique, soit que son absence pourrait être compensée par une autre protéine. Un candidat privilégié susceptible de se substituer à β-caténine, serait plakoglobine, aussi connu sous le nom de γ-caténine. En effet, ces deux protéines partagent de multiples caractéristiques structurelles. Afin de démontrer que la protéine γ-caténine peut compenser l'absence de β-caténine, nous avons généré des souris dans lesquelles, le système hématopoïétique est déficient pour ces deux protéines. Cette déficience combinée de β- caténine et γ-caténine ne perturbe pas la capacité des Cellules Souche Hématopoïétique-Long Terme (CSH-LT) de se renouveler, par contre elle agit sur un progéniteur précoce déjà différencié de la moelle osseuse. Ces résultats mettent en évidence que la protéine γ-caténine est capable de compenser l'absence de protéine β-caténine dans le système hématopoïétique. Par conséquent, ce travail contribue à une meilleure connaissance de la cascade Wnt dans l'hématopoïèse. Summary The canonical Wnt signal transduction pathway is a developmentally highly conserved. Wnts are secreted molecules which bind to the family of Frizzled receptors in a complex with the low density lipoprotein receptor related protein (LRP-5/6). This initial activation step leads to the stabilization and accumulation of β-catenin, first in the cytoplasm and subsequently in the nucleus where it forms heterodimers with TCF/LEF transcription factor family members. Wnt signalling has been shown to be important during early lymphopoiesis and has more recently, been suggested to be a key player in self-renewal of haematopoietic stem cells (HSCs). Although mostly gain of function studies indicate that components of the Wnt signalling pathway can influence the haematopoietic system, the role of β-catenin has never been directly investigated. The aim of this thesis project is to investigate the putatively critical role of β-catenin in vivo using the Cre-loxP mediated conditional loss of function approach. Surprisingly, β-catenin deficient bone marrow (BM) progenitors arc not impaired in their ability to self-renew and/or to reconstitute all haematopoietic lineages (myeloid, erythroid and lymphoid) in both mixed and straight bone marrow chimeras. In addition, both thymocyte development and survival, and antigen-induced proliferation of peripheral T cells are β- catenin independent. Our results do not necessarily exclude the possibility of an important function for β-catenin mediated Wnt signalling in the haematopoietic system, it rather raises the question that β-catenin is compensated for by another protein. A prime candidate that may take over the function of β-catenin in its absence, is the close relative plakoglobin, also know as γ-catenin. This protein shares multiple structural features with β-catenin. In order to investigate whether γ-catenin can compensate for the loss of β-catenin we have generated mice in which the haematopoietic compartment is deficient for both proteins. Combined deficiency of β-catenin and γ-catenin does not perturb Long Term-Haematopoietic Stem Cells (LT-HSC) self renewal, but affects an already lineage committed progenitor population within the BM. Our results demonstrate that y-catenin can indeed compensate for the loss of β-catenin within the haematopoietie system.
Resumo:
TLR4 (Toll-like receptor 4) is essential for sensing the endotoxin of Gram-negative bacteria. Mutations or deletion of the TLR4 gene in humans or mice have been associated with altered predisposition to or outcome of Gram-negative sepsis. In the present work, we studied the expression and regulation of the Tlr4 gene of mouse. In vivo, TLR4 levels were higher in macrophages compared with B, T or natural killer cells. High basal TLR4 promoter activity was observed in RAW 264.7, J774 and P388D1 macrophages transfected with a TLR4 promoter reporter vector. Analysis of truncated and mutated promoter constructs identified several positive [two Ets (E twenty-six) and one AP-1 (activator protein-1) sites] and negative (a GATA-like site and an octamer site) regulatory elements within 350 bp upstream of the transcriptional start site. The myeloid and B-cell-specific transcription factor PU.1 bound to the proximal Ets site. In contrast, none among PU.1, Ets-1, Ets-2 and Elk-1, but possibly one member of the ESE (epithelium-specific Ets) subfamily of Ets transcription factors, bound to the distal Ets site, which was indispensable for Tlr4 gene transcription. Endotoxin did not affect macrophage TLR4 promoter activity, but it decreased TLR4 steady-state mRNA levels by increasing the turnover of TLR4 transcripts. TLR4 expression was modestly altered by other pro- and anti-inflammatory stimuli, except for PMA plus ionomycin which strongly increased promoter activity and TLR4 mRNA levels. The mouse and human TLR4 genes were highly conserved. Yet, notable differences exist with respect to the elements implicated in gene regulation, which may account for species differences in terms of tissue expression and modulation by microbial and inflammatory stimuli.
Resumo:
HYPOTHESIS: Recent evidence indicates that tumor response rates after isolated limb perfusion (ILP) are improved when tumor necrosis factor (TNF) is added to the locoregional perfusion of high doses of chemotherapy. Other factors, related to the patient or the ILP procedure, may interfere with the specific role of TNF in the early hemodynamic response after ILP with TNF and high-dose chemotherapy. DESIGN: Case-control study. SETTING: Tertiary care university hospital. PATIENTS: Thirty-eight patients with a locoregionally advanced tumor of a limb treated by ILP with TNF and high-dose chemotherapy (TNF group) were compared with 31 similar patients treated by ILP with high-dose chemotherapy alone (non-TNF group). INTERVENTIONS: Swan-Ganz catheter hemodynamic recordings, patients' treatment data collection, and TNF and interleukin 6 plasma level measurements at regular intervals during the first 36 hours following ILP. MAIN OUTCOME MEASURES: Hemodynamic profile and total fluid and catecholamine administration. RESULTS: In the TNF group, significant changes were observed (P<.006): the mean arterial pressure and the systemic vascular resistance index decreased, and the temperature, heart rate, and cardiac index increased. These hemodynamic alterations started when the ILP tourniquet was released (ie, when or shortly after the systemic TNF levels were the highest). The minimal mean arterial pressure, the minimal systemic vascular resistance index, the maximal cardiac index, the intensive care unit stay, and the interleukin 6 maximal systemic levels were significantly (P<.001 for all) correlated to the log(10) of the systemic TNF level. In the non-TNF group, only a brief decrease in the blood pressure following tourniquet release and an increase in the temperature and in the heart rate were statistically significant (P<.006). Despite significantly more fluid and catecholamine administration in the TNF group, the mean arterial pressure and the systemic vascular resistance index were significantly (P<.001) lower than in the non-TNF group. CONCLUSIONS: Release of the tourniquet induces a blood pressure decrease that lasts less than 1 hour in the absence of TNF and that is distinct from the septic shock-like hemodynamic profile following TNF administration. The systemic TNF levels are correlated to this hemodynamic response, which can be observed even at low TNF levels.
Resumo:
Background: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for a ntiviral intervention but also a key player i n the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity (MAVS and TRIF) as well as a phosphatase involved in growth factor signaling (TCPTP). T he aim of this study was to identify novel cellular substrates o f the N S3-4A protease and to investigate their role in the replication and pathogenesis of HCV. Methods: Cell lines inducibly expressing t he NS3-4A protease were analyzed in basal as well as interferon-α-stimulated states by stable isotopic l abeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. Candidates fulfilling stringent criteria for potential substrates or products of the NS3-4A protease were further i nvestigated in different experimental systems as well a s in liver biopsies from patients with chronic hepatitis C. Results: SILAC coupled with protein separation and mass spectrometry yielded > 5000 proteins of which 18 candidates were selected for further analyses. These allowed us to identify GPx8, a membrane-associated peroxidase involved in disulfide bond formation in the endoplasmic reticulum, as a n ovel cellular substrate of the H CV NS3-4A protease. Cleavage occurs at cysteine in position 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic hepatitis C. Further functional studies, involving overexpression and RNA silencing, revealed that GPx8 is a p roviral factor involved in viral particle production but not in HCV entry or HCV RNA replication. Conclusions: GPx8 is a proviral host factor cleaved by the HCV NS3-4A protease. Studies investigating the consequences of GPx8 cleavage for protein function are underway. The identification of novel cellular substrates o f the HCV N S3-4A protease should yield new insights i nto the HCV life cycle and the pathogenesis of hepatitis C and may reveal novel targets for antiviral intervention.
Resumo:
The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis. However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals, indicating that inhibitors of the apoptosis-signalling pathway must exist. Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues. The short form, FLIPs, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis, whereas the long form, FLIP(L), contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue. FLIPs and FLIP(L) interact with the adaptor protein FADD and the protease FLICE, and potently inhibit apoptosis induced by all known human death receptors. FLIP(L) is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis. High levels of FLIP(L) protein are also detectable in melanoma cell lines and malignant melanoma tumours. Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis.
Resumo:
BACKGROUND: The Notch pathway is essential for proper epidermal differentiation during embryonic skin development. Moreover, skin specific loss of Notch signaling in the embryo results in skin barrier defects accompanied by a B-lymphoproliferative disease. However, much less is known about the consequences of loss of Notch signaling after birth. METHODOLOGY AND PRINCIPAL FINDINGS: To study the function of Notch signaling in the skin of adult mice, we made use of a series of conditional gene targeted mice that allow inactivation of several components of the Notch signaling pathway specifically in the skin. We demonstrate that skin-specific inactivation of Notch1 and Notch2 simultaneously, or RBP-J, induces the development of a severe form of atopic dermatitis (AD), characterized by acanthosis, spongiosis and hyperkeratosis, as well as a massive dermal infiltration of eosinophils and mast cells. Likewise, patients suffering from AD, but not psoriasis or lichen planus, have a marked reduction of Notch receptor expression in the skin. Loss of Notch in keratinocytes induces the production of thymic stromal lymphopoietin (TSLP), a cytokine deeply implicated in the pathogenesis of AD. The AD-like associated inflammation is accompanied by a myeloproliferative disorder (MPD) characterized by an increase in immature myeloid populations in the bone marrow and spleen. Transplantation studies revealed that the MPD is cell non-autonomous and caused by dramatic microenvironmental alterations. Genetic studies demontrated that G-CSF mediates the MPD as well as changes in the bone marrow microenvironment leading to osteopenia. SIGNIFICANCE: Our data demonstrate a critical role for Notch in repressing TSLP production in keratinocytes, thereby maintaining integrity of the skin and the hematopoietic system.